Gravity is the only constant stimulus during the evolution of life. To investigate the impact of the absence of gravity on living systems, their molecular and morphological status has to be studied under microgravity conditions. The experiment unit CellFix was developed in order to provide the possibility of exposure and chemical fixation of small biological systems, such as neurons, stem cells, small animals, yeast cultures, plants, etc., at dedicated time points during a sounding rocket flight. The current version of CellFix consists of two culture bags containing cell cultures in a temperature-controlled pressure vessel. The biosystems in the culture bags can be fixed by pumping the fixative [e.g., paraformaldehyde (PFA), methanol, RNAlater, or others] from a connected bag into the cell suspension. The mechatronic basis of the experiment unit is constructed from compartments of the shelf parts. Open source microcontroller systems (Arduino) or gear pumps, accumulators, etc., from the model making sector are affordable and reliable components to build up an experiment on an unmanned space mission such as a sounding rocket flight. Also, new technologies such as fused deposition modeling were used to construct structures and brackets, which were tested successfully in environmental tests and real space flights (MAPHEUS 7 and 8 sounding rocket missions). In combination with the possibility to handle the experiment as a late access insert in a standardized rocket compartment, CellFix provides a multiusable experiment unit for performing life science experiments in space.

1.
Bradke
,
F.
and
Dotti
,
C. G.
, “
The role of local actin instability in axon formation
,”
Science
283
,
1931
1934
(
1999
).
2.
Cregg
,
J. M.
,
DePaul
,
M. A.
,
Filous
,
A. R.
,
Lang
,
B. T.
,
Tran
,
A.
, and
Silver
,
J.
, “
Functional regeneration beyond the glial scar
,”
Exp. Neurol.
253
,
197
207
(
2014
).
3.
Dotti
,
C. G.
,
Sullivan
,
C. A.
, and
Banker
,
G. A.
, “
The establishment of polarity by hippocampal neurons in culture
,”
J. Neurosci.
8
,
1454
1468
(
1988
).
4.
Erturk
,
A.
,
Hellal
,
F.
,
Enes
,
J.
, and
Bradke
,
F.
, “
Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration
,”
J. Neurosci.
27
,
9169
9180
(
2007
).
5.
Frett
,
T.
,
Petrat
,
G.
,
van Loon
,
J. W. A.
,
Hemmersbach
,
R.
, and
Anken
,
R.
, “
Hypergravity facilities in the ESA ground-based facility program—Current research activities and future tasks
,”
Microgravity Sci. Technol.
28
,
205
214
(
2015
).
6.
Gaboyard
,
S.
,
Sans
,
A.
, and
Lehouelleur
,
J.
, “
Differential impact of hypergravity on maturating innervation in vestibular epithelia during rat development
,”
Dev. Brain Res.
143
,
15
23
(
2003
).
7.
Genchi
,
G. G.
,
Cialdai
,
F.
,
Monici
,
M.
,
Mazzolai
,
B.
,
Mattoli
,
V.
, and
Ciofani
,
G.
, “
Hypergravity stimulation enhances PC12 neuron-like cell differentiation
,”
BioMed Res. Int.
2015
,
748121
.
8.
Hellal
,
F.
,
Hurtado
,
A.
,
Ruschel
,
J.
,
Flynn
,
K. C.
,
Laskowski
,
C. J.
,
Umlauf
,
M.
,
Kapitein
,
L. C.
,
Strikis
,
D.
,
Lemmon
,
V.
,
Bixby
,
J.
 et al., “
Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury
,”
Science
331
,
928
931
(
2011
).
9.
Koppelmans
,
V.
,
Bloomberg
,
J. J.
,
Mulavara
,
A. P.
, and
Seidler
,
R. D.
, “
Brain structural plasticity with spaceflight
,”
npj Microgravity
2
,
2
(
2016
).
10.
Raivich
,
G.
and
Makwana
,
M.
, “
The making of successful axonal regeneration: Genes, molecules and signal transduction pathways
,”
Brain Res. Rev.
53
,
287
311
(
2007
).
11.
Roberts
,
D. R.
,
Albrecht
,
M. H.
,
Collins
,
H. R.
,
Asemani
,
D.
,
Chatterjee
,
A. R.
,
Spampinato
,
M. V.
,
Zhu
,
X.
,
Chimowitz
,
M. I.
, and
Antonucci
,
M. U.
, “
Effects of spaceflight on astronaut brain structure as indicated on MRI
,”
N. Engl. J. Med.
377
,
1746
1753
(
2017
).
12.
Rosner
,
H.
,
Wassermann
,
T.
,
Moller
,
W.
, and
Hanke
,
W.
, “
Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells
,”
Protoplasma
229
,
225
234
(
2006
).
13.
Sofroniew
,
M. V.
, “
Molecular dissection of reactive astrogliosis and glial scar formation
,”
Trends Neurosci.
32
,
638
647
(
2009
).
14.
Sofroniew
,
M. V.
, “
Dissecting spinal cord regeneration
,”
Nature
557
,
343
350
(
2018
).
15.
Sofroniew
,
M. V.
and
Vinters
,
H. V.
, “
Astrocytes: Biology and pathology
,”
Acta Neuropathol.
119
,
7
35
(
2009
).
16.
Tahirovic
,
S.
and
Bradke
,
F.
, “
Neuronal polarity
,”
Cold Spring Harbor Perspect. Biol.
1
,
a001644
(
2009
).
17.
Tedeschi
,
A.
and
Bradke
,
F.
, “
Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration
,”
Curr. Opin. Neurobiol.
42
,
118
127
(
2017
).
18.
Witte
,
H.
and
Bradke
,
F.
, “
The role of the cytoskeleton during neuronal polarization
,”
Curr. Opin. Neurobiol.
18
,
479
487
(
2008
).
19.
Witte
,
H.
,
Neukirchen
,
D.
, and
Bradke
,
F.
, “
Microtubule stabilization specifies initial neuronal polarization
,”
J. Cell Biol.
180
,
619
632
(
2008
).
You do not currently have access to this content.