Revealing interfacial structure and dynamics has been one of the essential thematic topics in material science and condensed matter physics. Synchrotron-based x-ray scattering techniques can deliver unique and insightful probing of interfacial structures and dynamics, in particular, in reflection geometries with higher surface and interfacial sensitivity than transmission geometries. We demonstrate the design and implementation of an in situ shearing x-ray measurement system, equipped with both inline parallel-plate and cone-and-plate shearing setups and operated at the advanced photon source at Argonne National Laboratory, to investigate the structures and dynamics of end-tethered polymers at the solid–liquid interface. With a precise lifting motor, a micrometer-scale gap can be produced by aligning two surfaces of a rotating upper shaft and a lower sample substrate. A torsional shear flow forms in the gap and applies tangential shear forces on the sample surface. The technical combination with nanoscale rheology and the utilization of in situ x-ray scattering allow us to gain fundamental insights into the complex dynamics in soft interfaces under shearing. In this work, we demonstrate the technical scope and experimental capability of the in situ shearing x-ray system through the measurements of charged polymers at both flat and curved interfaces upon shearing. Through the in situ shearing x-ray scattering experiments integrated with theoretical simulations, we aim to develop a detailed understanding of the short-range molecular structure and mesoscale ionic aggregate morphology, as well as ion transport and dynamics in soft interfaces, thereby providing fundamental insight into a long-standing challenge in ionic polymer brushes with a significant technological impact.

2.
K.
Yu
,
P.
Andruschak
,
H. H.
Yeh
,
D.
Grecov
, and
J. N.
Kizhakkedathu
,
Biomaterials
166
,
79
(
2018
).
3.
P.
Maheshwari
,
S.
Mukherjee
,
D.
Bhattacharya
,
S.
Sen
,
R. B.
Tokas
,
Y.
Honda
 et al,
ACS Appl. Mater. Interfaces
7
,
10169
(
2015
).
4.
L.
Cheng
,
P.
Fenter
,
K. L.
Nagy
,
M. L.
Schlegel
, and
N. C.
Sturchio
,
Phys. Rev. Lett.
87
,
156103
(
2001
).
5.
S.
Chattopadhyay
,
A.
Uysal
,
B.
Stripe
,
Y.
Ha
,
T. J.
Marks
,
E. A.
Karapetrova
 et al,
Phys. Rev. Lett.
105
,
037803
(
2010
).
6.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
,
Nat. Mater.
11
,
103
(
2012
).
7.
B.
Zhao
and
W. J.
Brittain
,
Prog. Polym. Sci.
25
,
677
(
2000
).
8.
T.
Wang
,
Y.
Long
,
L.
Liu
,
X.
Wang
,
V. S. J.
Craig
,
G.
Zhang
 et al,
Langmuir
30
,
12850
(
2014
).
9.
J.
Yu
,
J.
Mao
,
G.
Yuan
,
S.
Satija
,
Z.
Jiang
,
W.
Chen
 et al,
Macromolecules
49
,
5609
(
2016
).
10.
P.
Zhuang
,
A.
Dirani
,
K.
Glinel
, and
A. M.
Jonas
,
Langmuir
32
,
3433
(
2016
).
11.
G.
Kocak
,
C.
Tuncer
, and
V.
Butun
,
Polym. Chem.
8
,
144
(
2017
).
12.
Y.
Xu
,
J.
Yuan
,
B.
Fang
,
M.
Drechsler
,
M.
Müllner
,
S.
Bolisetty
 et al,
Adv. Funct. Mater.
20
,
4182
(
2010
).
13.
H.
Ouyang
,
Z.
Xia
, and
J.
Zhe
,
Nanotechnology
20
,
195703
(
2009
).
14.
A.
Korolkovas
,
C.
Rodriguez-Emmenegger
,
A.
de Los Santos Pereira
,
A.
Chennevière
,
F.
Restagno
,
M.
Wolff
 et al,
Macromolecules
50
,
1215
(
2017
).
15.
Y.
Liu
,
Y.
Xiao
, and
J.
Luo
,
Sci. China: Technol. Sci.
55
,
3352
(
2012
).
16.
A.
Farrukh
,
A.
Akram
,
A.
Ghaffar
,
S.
Hanif
,
A.
Hamid
,
H.
Duran
 et al,
Appl. Mater. Interfaces
5
,
3784
(
2013
).
17.
B. H.
Shen
,
B. L.
Armstrong
,
M.
Doucet
,
L.
Heroux
,
J. F.
Browning
,
M.
Agamalian
 et al,
ACS Appl. Mater. Interfaces
10
,
9424
(
2018
).
18.
J. L.
Barrat
,
Macromolecules
25
,
832
(
1992
).
19.
V.
Kumaran
,
Macromolecules
26
,
2464
(
1993
).
20.
M.
Deng
,
X.
Li
,
H.
Liang
,
B.
Caswell
, and
G. E.
Karniadakis
,
J. Fluid Mech.
711
,
192
(
2012
).
21.
P. S.
Doyle
,
E. S. G.
Shaqfeh
, and
A. P.
Gast
,
Phys. Rev. Lett.
78
,
1182
(
1997
).
22.
M. G.
Saphiannikova
,
V. A.
Pryamitsyn
, and
T.
Cosgrove
,
Macromolecules
31
,
6662
(
1998
).
23.
M.
Kobayashi
,
H.
Yamaguchi
,
Y.
Terayama
,
Z.
Wang
,
K.
Ishihara
,
M.
Hino
 et al,
Macromol. Symp.
279
,
79
(
2009
).
24.
L.
Chai
and
J.
Klein
,
Macromolecules
41
,
1831
(
2008
).
25.
B. G. P.
van Ravensteijn
,
R.
Bou Zerdan
,
D.
Seo
,
N.
Cadirov
,
T.
Watanabe
,
J. A.
Gerbec
 et al,
ACS Appl. Mater. Interfaces
11
,
1363
(
2018
).
26.
P. M.
Cann
and
H. A.
Spikes
,
Tribol. Lett.
19
,
289
(
2005
).
27.
28.
S. C.
Bae
,
Z.
Lin
, and
S.
Granick
,
Macromolecules
38
,
9275
(
2005
).
29.
C.
Yu
,
G.
Evmenenko
,
J.
Kmetko
, and
P.
Dutta
,
Langmuir
19
,
9558
(
2003
).
30.
C. J.
Yu
,
A. G.
Richter
,
A.
Datta
,
M. K.
Durbin
, and
P.
Dutta
,
Phys. Rev. Lett.
82
,
2326
(
1999
).
31.
G.
Renaud
,
R.
Lazzari
, and
F.
Leroy
,
Surf. Sci. Rep.
64
,
255
(
2009
).
32.
G.
Ju
,
M. J.
Highland
,
C.
Thompson
,
J. A.
Eastman
,
P. H.
Fuoss
,
H.
Zhou
 et al,
J. Synchrotron Radiat.
25
,
1036
(
2018
).
33.
S. M.
Baker
,
G.
Smith
,
R.
Pynn
,
P.
Butler
,
J.
Hayter
,
W.
Hamilton
 et al,
Rev. Sci. Instrum.
65
,
412
(
1994
).
34.
J. K. G.
Dhont
,
M. P.
Lettinga
,
Z.
Dogic
,
T. A. J.
Lenstra
,
H.
Wang
,
S.
Rathgeber
 et al,
Faraday Discuss.
123
,
157
(
2003
).
35.
D.
van der Grinten
,
M.
Wolff
,
H.
Zabel
, and
A.
Magerl
,
Meas. Sci. Technol.
19
,
034016
(
2008
).
36.
S. M.
Baker
,
G. S.
Smith
,
D. L.
Anastassopoulos
,
C.
Toprakcioglu
,
A. A.
Vradis
, and
D. G.
Bucknall
,
Macromolecules
33
,
1120
(
2000
).
37.
R.
Ivkov
,
P. D.
Butler
,
S. K.
Satija
, and
L. J.
Fetters
,
Langmuir
17
,
2999
(
2001
).
38.
M.
Walz
,
S.
Gerth
,
P.
Falus
,
M.
Klimczak
,
T. H.
Metzger
, and
A.
Magerl
,
J. Phys.: Condens. Matter
23
,
324102
(
2011
).
39.
M.
Kawecki
,
P.
Gutfreund
,
F. A.
Adlmann
,
E.
Lindholm
,
S.
Longeville
,
A.
Lapp
 et al,
J. Phys.: Conf. Ser.
746
,
012014
(
2016
).
40.
Z.
Wen
and
J.
Petera
,
Chem. Process Eng.
38
,
265
(
2017
).
41.
M. M.
de Beer
,
J. T. F.
Keurentjes
,
J. C.
Schouten
, and
J.
van der Schaaf
,
Chem. Eng. J.
242
,
53
(
2014
).
42.
K. S.
Mriziq
,
H. J.
Dai
,
M. D.
Dadmun
,
G. E.
Jellison
, and
H. D.
Cochran
,
Rev. Sci. Instrum.
75
,
2171
(
2004
).
43.
R. W.
Connelly
and
J.
Greener
,
J. Rheol.
29
,
209
(
1985
).
44.
M.
Özkan
,
P. J.
Thomas
,
A. J.
Cooper
, and
S. J.
Garrett
,
Eng. Appl. Comput. Fluid
11
,
142
(
2017
).
45.
S.
Poncet
,
Instabilities, Turbulence and Heat Transfer in Confined Rotating Flows
(
Aix-Marseille Université
,
2014
).
46.
Z.
Jiang
and
W.
Chen
,
J. Appl. Crystallogr.
50
,
1653
(
2017
).
47.
A.
Korolkovas
,
P.
Gutfreund
,
A.
Chenneviere
,
J. F.
Ankner
,
F. A.
Adlmann
,
M.
Wolff
 et al,
Phys. Rev. E
98
,
032501
(
2018
).
48.
J.
Klein
,
D.
Perahia
, and
S.
Warburg
,
Nature
352
,
143
(
1991
).
49.
J.
Yu
,
N. E.
Jackson
,
X.
Xu
,
Y.
Morgenstern
,
Y.
Kaufman
,
M.
Ruths
 et al,
Science
360
,
1434
(
2018
).
50.
Z.
Zhang
,
A. J.
Morse
,
S. P.
Armes
,
A. L.
Lewis
,
M.
Geoghegan
, and
G. J.
Leggett
,
Langmuir
27
,
2514
(
2011
).

Supplementary Material

You do not currently have access to this content.