Liquid metal catalysts (LMCats) (e.g., molten copper) can provide a new mass-production method for two-dimensional materials (2DMs) (e.g., graphene) with significantly higher quality and speed and lower energy and material consumption. To reach such technological excellence, the physicochemical properties of LMCats and the growth mechanisms of 2DMs on LMCats should be investigated. Here, we report the development of a chemical vapor deposition (CVD) reactor which allows the investigation of ongoing chemical reactions on the surface of a molten metal at elevated temperatures and under reactive conditions. The surface of the molten metal is monitored simultaneously using synchrotron x-ray scattering, Raman spectroscopy, and optical microscopy, thereby providing complementary information about the atomic structure and chemical state of the surface. To enable in situ characterization on a molten substrate at high temperatures (e.g., ∼1370 K for copper), the optical and x-ray windows need to be protected from the evaporating LMCat, reaction products, and intense heat. This has been achieved by creating specific gas-flow patterns inside the reactor. The optimized design of the reactor has been achieved using multiphysics COMSOL simulations, which take into account the heat transfer, fluid dynamics, and transport of LMCat vapor inside the reactor. The setup has been successfully tested and is currently used to investigate the CVD growth of graphene on the surface of molten copper under pressures ranging from medium vacuum up to atmospheric pressure.

1.
C.
Mattevi
,
H.
Kim
, and
M.
Chhowalla
,
J. Mater. Chem.
21
,
3324
(
2011
).
2.
Z.
Li
,
I. A.
Kinloch
,
R. J.
Young
,
K. S.
Novoselov
,
G.
Anagnostopoulos
,
J.
Parthenios
,
C.
Galiotis
,
K.
Papagelis
,
C.-Y.
Lu
, and
L.
Britne
,
ACS Nano
9
,
3917
3925
(
2015
).
3.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
(
2009
).
4.
P.
Kula
,
W.
Szymańsk
,
Ł.
Kołodziejczyk
,
R.
Atraszkiewicz
,
K.
Dybowsk
,
J.
Grabarczyk
,
R.
Pietrasik
,
P.
Niedzielsk
,
Ł.
Kaczmarek
, and
M.
Cłapa
,
Arch. Metall. Mater.
60
,
2535
(
2015
).
5.
P.
Kula
,
R.
Pietrasik
,
R.
Atraszkiewicz
,
K.
Dybowski
,
W.
Modrzyk
,
P. Z.
Zawistowski
, and
B. M.
Klinowski
, Patent application WO 2014/035264 A1,
2014
.
7.
H.
Zhao
and
N. R.
Aluru
,
J. Appl. Phys.
108
,
064321
(
2010
).
8.
J.
Han
,
S.
Ryu
,
D.
Sohn
, and
S.
Im
,
Carbon
68
,
250
257
(
2014
).
9.
D.
Geng
,
B.
Wu
,
Y.
Guo
,
L.
Huang
,
Y.
Xue
,
J.
Chen
,
G.
Yu
,
L.
Jiang
,
W.
Hu
, and
Y.
Liu
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
7992
(
2012
).
10.
J.
Wang
,
M.
Zeng
,
L.
Tan
,
B.
Dai
,
Y.
Deng
,
M.
Rummeli
,
H.
Xu
,
Z.
Li
,
S.
Wang
,
L.
Peng
,
J.
Eckert
, and
L.
Fu
,
Sci. Rep.
3
,
2670
(
2103
).
11.
G.
Ding
,
Y.
Zhu
,
S.
Wang
,
Q.
Gong
,
L.
Sun
,
T.
Wu
,
X.
Xie
, and
M.
Jiang
,
Carbon
53
,
321
(
2013
).
12.
P.
Bampoulis
,
L.
Zhang
,
A.
Safaei
,
R.
van Gastel
,
B.
Poelsema
, and
H. J. W.
Zandvliet
,
J. Phys.: Condens. Matter
26
,
442001
(
2014
).
13.
D.
Geng
,
B.
Wu
,
Y.
Guo
,
B.
Luo
,
Y.
Xue
,
J.
Chen
,
G.
Yu
, and
Y.
Liu
,
J. Am. Chem. Soc.
135
,
6431
(
2013
).
14.
D.
Geng
,
L.
Meng
,
B.
Chen
,
E.
Gao
,
W.
Yan
,
H.
Yan
,
B.
Luo
,
J.
Xu
,
H.
Wang
,
Z.
Mao
,
Z.
Xu
,
L.
He
,
Z.
Zhang
,
L.
Peng
, and
G.
Yu
,
Adv. Mater.
26
,
6423
(
2014
).
15.
Y.
Ogino
,
Catalysis and Surface Properties of Liquid Metals and Alloys
, Chemical Industries Vol. 29 (
Taylor & Francis
,
1987
).
16.
M.
Zeng
,
L.
Tan
, and
J.
Wang
,
Chem. Mater.
26
,
3637
(
2014
).
17.
J. R.
Anderson
, “
Solubility of carbon in molten copper manganese and copper nickel alloy
,” M.Sc. thesis,
MIT
,
1947
.
18.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
(
2013
).
19.
O.
Frank
,
L.
Kavan
, and
M.
Kalbac
,
Nanoscale
6
,
6363
(
2014
).
20.
I.
Daniel
,
Ph.
Gillet
,
B. T.
Poe
, and
P. F.
McMillan
,
Phys. Chem. Miner.
22
,
74
(
1995
).
21.
H.
Fujimori
,
M.
Yashima
,
M.
Kakihana
, and
M.
Yoshimura
,
J. Am. Ceram. Soc.
84
,
663
(
2001
).
22.
H.
Fujimori
,
M.
Kakihana
,
K.
Ioku
,
S.
Goto
, and
M.
Yoshimura
,
Appl. Phys. Lett.
79
,
937
(
2001
).
23.
E. H.
van Veen
and
D.
Roekaerts
,
Combust. Sci. Technol.
175
,
1893
(
2003
).
24.
A. G.
Kalampounias
,
S. N.
Yannopoulos
, and
G. N.
Papatheodorou
,
J. Chem. Phys.
124
,
014504
(
2006
).
25.
S.
Berciaud
,
M. Y.
Han
,
L. E.
Brus
,
P.
Kim
, and
T. F.
Heinz
,
Phys. Rev. Lett.
104
,
227401
(
2010
).
26.
P. S.
Pershan
,
Eur. Phys. J.: Spec. Top.
196
,
109
(
2011
).
27.
O. G.
Shpyrko
, “
Experimental x-ray studies of liquid surfaces
,” Ph.D. thesis,
Harvard University
,
2003
.
28.
F.
Jean
,
T.
Zhou
,
N.
Blanc
,
R.
Felici
,
J.
Coraux
, and
G.
Renaud
,
Phys. Rev. B
91
,
245424
(
2015
).
29.
O. V.
Konovalov
and
A. A.
Vorobiev
,
J. Appl. Crystallogr.
46
,
270
(
2013
).
30.
H.
Kraack
,
L.
Tamam
,
E.
Sloutskin
,
M.
Deutsch
, and
B. M.
Ocko
,
Langmuir
23
,
7571
(
2007
).
31.
O. G.
Shpyrko
,
R.
Streitel
,
V. S. K.
Balagurusamy
,
A. Y.
Grigoriev
,
M.
Deutsch
,
B. M.
Ocko
,
M.
Meron
,
B.
Lin
, and
P. S.
Pershan
,
Science
313
,
77
(
2006
).
32.
N.
Blanc
,
F.
Jean
,
A. V.
Krasheninnikov
,
G.
Renaud
, and
J.
Coraux
,
Phys. Rev. Lett.
111
,
085501
(
2013
).
33.
T.
Schumann
, “
Direct growth and characterization of graphene layers on insulating substrates
,” Ph.D. thesis,
Humboldt-Universität zu Berlin
,
2014
.
34.
C.
Nicklin
,
T.
Arnold
,
J.
Rawle
, and
A.
Warne
,
J. Synchrotron Radiat.
23
,
1245
(
2016
).
35.
O. H.
Seeck
,
C.
Deiter
,
K.
Pflaum
,
F.
Bertam
,
A.
Beerlink
,
H.
Franz
,
J.
Horbach
,
H.
Schulte-Schrepping
,
B. M.
Murphy
,
M.
Greve
, and
O.
Magnussen
,
J. Synchrotron Radiat.
19
,
30
(
2012
).
36.
G.
Ciatto
,
M. H.
Chu
,
P.
Fontaine
,
N.
Aubert
,
H.
Renevier
, and
J. L.
Deschanvres
,
Thin Solid Films
617
,
48
(
2016
).
37.
O. A.
Kashirskaya
,
V. A.
Lotkhov
, and
V. V.
Dilman
,
Theor. Found. Chem. Eng.
44
,
665
(
2010
).
38.
D.
Manara
,
M.
Sheindlin
,
W.
Heinz
, and
C.
Ronchi
,
Rev. Sci. Instrum.
79
,
113901
(
2008
).

Supplementary Material

You do not currently have access to this content.