We describe a highly integrated automated experiment module that allows us to investigate the active Brownian motion of light-driven colloidal Janus-particle suspensions. The module RAMSES (RAndom Motion of SElf-propelled particles in Space) is designed for the sounding rocket platform MAPHEUS (MAterialPHysikalische Experimente Unter Schwerelosigkeit). It allows us to perform experiments under weightlessness conditions in order to avoid sedimentation of the Janus particles and thus to study the spatially three-dimensional dynamics in the suspension. The module implements a newly developed strong homogeneous light source to excite self-propulsion in the Janus particles. The light source is realized through an array of high-power light-emitting diodes and replaces the conventional laser source, thus reducing heat dissipation and spatial extension of the experiment setup. The rocket module contains ten independent sample cells in order to ease the systematic study of the effect of control parameters such as light intensity or particle concentration and size in a single sounding-rocket flight. For each sample cell, transmitted light intensities are stored for postflight analysis in terms of differential dynamical microscopy.

1.
S.
Ramaswamy
,
Annu. Rev. Condens. Matter Phys.
1
,
323
(
2010
).
2.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
,
Rep. Prog. Phys.
78
,
056601
(
2015
).
3.
S.
Ramaswamy
,
J. Stat. Mech.: Theory Exp.
2017
,
054002
.
4.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
5.
L.
Baraban
,
M.
Tasinkevych
,
M. N.
Popescu
,
S.
Sanchez
,
S.
Dietrich
, and
O. G.
Schmidt
,
Soft Matter
8
,
48
(
2012
).
6.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
,
Eur. Phys. J.: Spec. Top.
202
,
1
(
2012
).
7.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
,
Phys. Rev. Lett.
108
,
168301
(
2012
).
8.
Y.
Fily
and
M. C.
Marchetti
,
Phys. Rev. Lett.
108
,
235702
(
2012
).
9.
L.
Berthier
and
J.
Kurchan
,
Nat. Phys.
9
,
310
(
2013
).
10.
R.
Ni
,
M. A. C.
Stuart
, and
M.
Dijkstra
,
Nat. Commun.
4
,
2704
(
2013
).
11.
M. E.
Cates
and
J.
Tailleur
,
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
12.
J. T.
Siebert
,
J.
Letz
,
T.
Speck
, and
P.
Virnau
,
Soft Matter
13
,
1020
(
2017
).
13.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
14.
A.
Zöttl
and
H.
Stark
,
Phys. Rev. Lett.
112
,
118101
(
2014
).
15.
S.
Das
,
A.
Garg
,
A. I.
Campbell
,
J.
Howse
,
A.
Sen
,
D.
Velegol
,
R.
Golestanian
, and
S. J.
Ebbens
,
Nat. Commun.
6
,
8999
(
2015
).
16.
M.
Enculescu
and
H.
Stark
,
Phys. Rev. Lett.
107
,
058301
(
2011
).
17.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
,
Soft Matter
7
,
8810
(
2011
).
18.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
,
J. Phys.: Condens. Matter
24
,
284129
(
2012
).
19.
J. R.
Gomez-Solano
,
S.
Samin
,
C.
Lozano
,
P.
Ruedas-Batuecas
,
R.
van Roij
, and
C.
Bechinger
,
Sci. Rep.
7
,
14891
(
2017
).
20.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
,
Phys. Rev. Lett.
110
,
238301
(
2013
).
21.
R.
Cerbino
and
V.
Trappe
,
Phys. Rev. Lett.
100
,
188102
(
2008
).
22.
F.
Giavazzi
,
D.
Brogioli
,
V.
Trappe
,
T.
Bellini
, and
R.
Cerbino
,
Phys. Rev. E
80
,
031403
(
2009
).
23.
D.
Germain
,
M.
Leocmach
, and
T.
Gibaud
,
Am. J. Phys.
84
,
202
(
2016
).
You do not currently have access to this content.