A thermal conduction measurement device was fabricated, consisting of a silicon dioxide membrane with integrated thermal sensors (Pt resistance heater/thermometer and Pt–Au thermocouples) using MEMS technology. Heat transfer between the heated device and a number of unused atomic force microscope and scanning thermal microscope probes was measured. Changes in thermal conduction related to changes in the tip shape resulting from initial contact were observed. The sensors were fabricated by electron beam lithography and lift-off followed by local subtractive processing of a Pt–Au multilayer to form Pt heater–resistance thermometer elements and Pt–Au thermocouples. Thermal isolation from the silicon substrate was provided by dry release of the supporting 50 nm thick SiO2 membrane using an isotropic SF6 inductively coupled plasma etch. The high thermal isolation of the sample combined with the sensitivity of the temperature sensors used allowed the detection of thermal conduction between the tip and the sample with high precision. The measured temperature range of the Pt resistor was 293–643 K. The measured thermal resistance of the membrane was 3 × 105 K/W in air and 1.44 × 106 K/W in vacuum. The tip contact resistance was measured with a noise level of 0.3g0T at room temperature, where g0 is the thermal resistance quantum.

1.
K.
Schwab
,
E. A.
Henriksen
,
J. M.
Worlock
, and
M. L.
Roukes
, “
Measurement of the quantum of thermal conductance
,”
Nature
404
,
974
977
(
2000
).
2.
B.
Gotsmann
and
M. A.
Lantz
, “
Quantized thermal transport across contacts of rough surfaces
,”
Nat. Mater.
12
(
1
),
59
65
(
2012
).
3.
A.
Banerjee
,
S.
Pal
,
E.
Rozenbergand
, and
B. K.
Chaudhuri
, “
Adiabatic and non-adiabatic small-polaron hopping conduction in La1−xPbxMnO3+δ (0.0 ≤ x ≤ 0.5)-type oxides above the metal–semiconductor transition
,”
J. Phys.: Condens. Matter
13
,
9489
(
2001
).
4.
A.
Assy
,
S.
Lefèvre
,
P.-O.
Chapuis
, and
S.
Gomès
, “
Analysis of heat transfer in the water meniscus at the tip-sample contact in scanning thermal microscopy
,”
J. Phys. D.: Appl. Phys.
47
(
44
),
442001
(
2014
).
5.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
, “
Quantitative thermometry of nanoscale hot spots
,”
Nano Lett.
12
(
2
),
596
601
(
2012
).
6.
A.
Assy
and
S.
Gomès
, “
Heat transfer at nanoscale contacts investigated with scanning thermal microscopy
,”
J. Appl. Phys.
107
,
043105
(
2015
).
7.
B.
Cretin
,
S.
Gomes
,
N.
Trannoy
, and
P.
Vairac
, “
Scanning thermal microscopy
,” in , Topics in Applied Physics Vol. 107 (
Springer Verlag
,
2007
), pp.
181
238
.
8.
Y.
Ge
,
Y.
Zhang
,
J. A.
Booth
,
J. M. R.
Weaver
, and
P. S.
Dobson
, “
Quantification of probe–sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size
,”
Nanotechnology
27
(
32
),
325503
(
2016
).
9.
P. S.
Dobson
,
G.
Mills
, and
J. M. R.
Weaver
, “
Microfabricated temperature standard based on Johnson noise measurement for the calibration of micro- and nano-thermometers
,”
Rev. Sci. Instrum.
76
(
5
),
054901
(
2005
).
10.
P. S.
Dobson
,
J. M. R.
Weaver
, and
G.
Mills
, “
New methods for calibrated scanning thermal microscopy (SThM)
,” in
Proceedings of IEEE Sensors
(
IEEE
,
2007
), pp.
708
711
.
11.
M.
Pumarol
,
M. C.
Rosamond
,
P. D.
Tovee
,
M. C.
Petty
,
D. A.
Zeze
,
V. I.
Falko
, and
O. V.
Kolosov
, “
Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures
,”
Nano Lett.
12
(
6
),
2906
2911
(
2012
).
12.
B. S.
Rao
and
U.
Hashim
, “
Pattern transfer of 1µm sized microgap and microbridge electrode for application in biomedical nano-diagnostics
,”
Adv. Mater. Res.
925
,
533
537
(
2014
).
13.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
Rev. Sci. Instrum.
61
(
2
),
802
808
(
1990
).
14.
B. L.
Thiel
,
M.
Toth
,
R. P. M.
Schroemges
,
J. J.
Scholtz
,
G.
Van Veen
, and
W. R.
Knowles
, “
Two-stage gas amplifier for ultrahigh resolution low vacuum scanning electron microscopy
,”
Rev. Sci. Instrum.
77
,
033705
(
2006
).
15.
W. P.
King
,
B.
Bhatia
,
J. R.
Felts
,
H. J.
Kim
,
B.
Kwon
,
B.
Lee
,
S.
Somnath
, and
M.
Rosenberger
, “
Heated atomic force microscope cantilevers and their applications
,”
Annu. Rev. Heat Transfer
16
(
1
),
287
326
(
2013
).
16.
J.
Lee
,
T.
Beechem
,
T.
Wright
,
B.
Nelson
,
S.
Graham
, and
W.
King
, “
Electrical, thermal, and mechanical characterization of silicon microcantilever heaters
,”
J. Microelectromechanical Syst.
15
(
6
),
1644
1655
(
2006
).
17.
S.
Poon
,
J.
Spièce
,
A.
Robson
,
O. V.
Kolosov
, and
S.
Thompson
,
Probing Thermal Transport and Layering in Disk Media Using Scanning Thermal Microscopy
(
IEEE
,
2017
).
18.
P. D.
Tovee
,
M. E.
Pumarol
,
M. C.
Rosamond
,
R.
Jones
,
M. C.
Petty
,
D. A.
Zeze
, and
O. V.
Kolosov
, “
Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes
,”
Phys. Chem. Chem. Phys.
16
(
3
),
1174
1181
(
2014
).
19.
X.
Zhang
and
C. P.
Grigoropoulos
, “
Thermal conductivity and diffusivity of free-standing silicon nitride thin films
,”
Rev. Sci. Instrum.
66
(
2
),
1115
1120
(
1995
).
20.

F2 Chemicals Ltd. Lea Lane, Lea Town, Nr. Preston Lancs. PR40RZ, UK.

21.

Bruker AFM probe, Bruker AFM Probes, 3601 Calle Tecate, Suite C, Camarillo, CA 93012, FESP V-2.

22.

Bruker USA (Atomic Force Microscopes), 112 Robin Hill Road Santa Barbara, CA 93117 USA.

23.

Kelvin Nanotechnology, 70 Oakfield Avenue, Glasgow, UK, G12 8LT, KNT-SThM-1an-5.

You do not currently have access to this content.