The vacuum and thermal environment of airless planetary surfaces, particularly those dominated by a particulate regolith such as the Moon and asteroids, produces intense near-surface thermal gradients that can substantially alter their thermal emissivity spectra when compared with spectra collected at ambient terrestrial conditions. Therefore, spectroscopic measurements acquired under conditions designed to simulate the radiation environment in which remote measurements of airless bodies are made should be used as the basis for interpreting those data. As a foundation for this goal, we report the radiometric calibration of thermal infrared emission data collected with a Fourier transform infrared spectrometer integrated with the custom Asteroid and Lunar Environment Chamber (ALEC) at Brown University. This chamber is designed to simulate the environment of airless planetary bodies by evacuating the atmospheric gasses to vacuum (<10–4 mbar), cooling the chamber with a flow of liquid nitrogen, heating the base and sides of samples with temperature-controlled sample cups, and heating the top of samples with an external light source. We present a new method for deriving sample emissivity based on the absolute radiometry properties of our system, focusing on the 400–2000 cm−1 wavenumber range. This method produces calibrated radiance spectra from calibration targets, and particulate samples and those spectra are used to derive emissivity spectra. We demonstrate that the ALEC system and data reduction methods successfully replicate independently determined spectral properties of particulate samples under both ambient and cold, vacuum conditions. The ALEC system is shown to be capable of supporting ongoing and future planetary exploration of airless surfaces by facilitating careful investigation of meteorites, lunar samples, and planetary materials at an array of environmental conditions.

1.
Arnold
,
J. A.
 et al., “
Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust
,”
J. Geophys. Res.: Planets
121
,
1342
1361
, https://doi.org/10.1002/2015JE004874 (
2016
).
2.
Baldridge
,
A. M.
 et al., “
The ASTER spectral library version 2.0
,”
Remote Sens. Environ.
113
,
711
715
(
2009
).
3.
Bandfield
,
J. L.
,
Hamilton
,
V. E.
, and
Christensen
,
P. R.
, “
A global view of Martian surface compositions from MGS-TES
,”
Science
287
,
1626
1630
(
2000
).
4.
Bramble
,
M. S.
 et al., “
Radiometric calibration of thermal emission data from the asteroid and lunar environment chamber (ALEC)
,” in
Lunar and Planetary Science Conference XLIX
,
2018
, abstract 1598.
5.
Brown
,
R. J.
and
Young
,
B. G.
, “
Spectral emission signatures of ambient temperature objects
,”
Appl. Opt.
14
,
2927
2934
(
1975
).
6.
Chase
,
D. B.
, “
The sensitivity and limitations of condensed phase infrared emission spectroscopy
,”
Appl. Spectrosc.
35
,
77
81
(
1981
).
7.
Christensen
,
P. R.
and
Harrison
,
S. T.
, “
Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks
,”
J. Geophys. Res.: Solid Earth
98
,
19819
19834
, https://doi.org/10.1029/93jb00135 (
1993
).
8.
Christensen
,
P. R.
 et al., “
The OSIRIS-REx thermal emission spectrometer (OTES) instrument
,”
Space Sci. Rev.
214
,
87
(
2018
).
9.
Conel
,
J. E.
, “
Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums
,”
J. Geophys. Res.
74
,
1614
1634
, https://doi.org/10.1029/jb074i006p01614 (
1969
).
10.
Coradini
,
A.
 et al., “
The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS
,”
Science
334
,
492
494
(
2011
).
11.
Donaldson Hanna
,
K. L.
 et al., “
Asteroid and lunar environment chamber (ALEC): Simulated asteroid and lunar environments for measuring analog materials
,” in
Lunar and Planetary Science Conference XLIII
,
2012a
, abstract No. 1659.
12.
Donaldson Hanna
,
K. L.
 et al., “
Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions
,”
J. Geophys. Res.: Planets
117
,
E11004
, https://doi.org/10.1029/2012je004184 (
2012b
).
13.
Donaldson Hanna
,
K. L.
 et al., “
Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner lunar radiometer experiment
,”
J. Geophys. Res.: Planets
117
,
E00H05
, https://doi.org/10.1029/2011je003862 (
2012c
).
14.
Donaldson Hanna
,
K. L.
 et al., “
Effects of varying temperature and pressure conditions on emissivity spectra: Application to thermal infrared observations of airless bodies
,” in
Lunar and Planetary Science Conference XLIV
,
2013
, abstract No. 2225.
15.
Donaldson Hanna
,
K. L.
 et al., “
Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust
,”
J. Geophys. Res.: Planets
119
,
1516
1545
, https://doi.org/10.1002/2013je004476 (
2014
).
16.
Donaldson Hanna
,
K. L.
 et al., “
Simulating near surface lunar conditions in the lab: Applications to Diviner thermal infrared observations of the Moon
,” in
European Lunar Symposium 3
,
2015
.
17.
Donaldson Hanna
,
K. L.
 et al., “
Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon
,”
Icarus
283
,
326
342
(
2017
).
18.
Donaldson Hanna
,
K. D.
 et al., “
Spectral characterization of analog samples in anticipation of OSIRIS-REx’s arrival at Bennu: A blind test study
,”
Icarus
319
,
701
723
(
2019
).
19.
Emery
,
J. P.
,
Cruikshank
,
D. P.
, and
Van Cleve
,
J.
, “
Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer space telescope: Detection of fine-grained silicates
,”
Icarus
182
,
496
512
(
2006
).
20.
Goetz
,
A. F. H.
, “
Infrared 8–13µ spectroscopy of the Moon and some cold silicate powders
,” Ph.D. dissertation (
California Institute of Technology
,
1967
).
21.
Greenhagen
,
B. T.
 et al., “
Global silicate mineralogy of the Moon from the Diviner lunar radiometer
,”
Science
329
,
1507
1509
(
2010
).
22.
Gundlach
,
B.
and
Blum
,
J.
, “
Outgassing of icy bodies in the Solar System–II: Heat transport in dry, porous surface dust layers
,”
Icarus
219
,
618
629
(
2012
).
23.
Hapke
,
B.
,
Theory of Reflectance and Emittance Spectroscopy
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2012
), p.
528
.
24.
Henderson
,
B. G.
and
Jakosky
,
B. M.
, “
Near-surface thermal gradients and their effects on mid-infrared emission spectra of planetary surfaces
,”
J. Geophys. Res.
99
,
19063
19073
, https://doi.org/10.1029/94je01861 (
1994
).
25.
Henderson
,
B. G.
and
Jakosky
,
B. M.
, “
Near-surface thermal gradients and mid-IR emission spectra: A new model including scattering and application to real data
,”
J. Geophys. Res.: Planets
102
,
6567
6580
, https://doi.org/10.1029/96je03781 (
1997
).
26.
Henderson
,
B. G.
,
Lucey
,
P. G.
, and
Jakosky
,
B. M.
, “
New laboratory measurements of mid-IR emission spectra of simulated planetary surfaces
,”
J. Geophys. Res.: Planets
101
,
14969
14975
, https://doi.org/10.1029/96je01089 (
1996
).
27.
Kember
,
D.
 et al., “
Fourier-transform i.r. emission studies of weakly emitting overlayers on metal surfaces; experimental and spectral-ratioing procedures and the comparative use of room temperature triglycine sulphate and low-temperature mercury cadmium telluride detectors
,”
Spectrochim. Acta. Part A
35
,
455
459
(
1979
).
28.
Kokaly
,
R. F.
 et al., USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035,
U.S. Geological Survey
,
2017
, p.
61
.
29.
Lebofsky
,
L. A.
and
Spencer
,
J. R.
, “
Radiometry and a thermal modeling of asteroids
,” in
Asteroids II
, edited by
Binzel
,
R. P.
, et al.
(
University of Arizona
,
Tucson
,
1989
), pp.
128
147
.
30.
Lebofsky
,
L. A.
 et al., “
A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas
,”
Icarus
68
,
239
251
(
1986
).
31.
Levison
,
H. F.
 et al., “
Lucy: Surveying the diversity of the Trojan asteroids: The fossils of planet formation
,” in
Lunar and Planetary Science Conference XLVIII
,
2017
, abstract No. 1964.
32.
Lim
,
L. F.
 et al., “
Thermal infrared (8–13 μm) spectra of 29 asteroids: The Cornell mid-infrared asteroid spectroscopy (MIDAS) survey
,”
Icarus
173
,
385
408
(
2005
).
33.
Logan
,
L. M.
and
Hunt
,
G. R.
, “
Emission spectra of particulate silicates under simulated lunar conditions
,”
J. Geophys. Res.
75
,
6539
6548
, https://doi.org/10.1029/jb075i032p06539 (
1970
).
34.
Logan
,
L. M.
 et al., “
Compositional implications of Christiansen frequency maximums for infrared remote sensing applications
,”
J. Geophys. Res.
78
,
4983
5003
, https://doi.org/10.1029/jb078i023p04983 (
1973
).
35.
Lohrengel
,
J.
and
Todtenhaupt
,
R.
, “
Wärmeleitfähigkeit, gesamtemissionsgrade und spektrale emissionsgrade der beschichtung Nextel-Velvet-Coating 811-21 (RAL 900 15 tiefschwarz matt)
,” PTB Mitteilungen Forschen und Prufen 106,
1996
, pp.
259
264
.
36.
Lucey
,
P. G.
 et al., “
First results from a laboratory facility for measurement of emission spectra under simulated planetary conditions
,” in
Lunar and Planetary Science Conference XXIV
(
Lunar and Planetary Institute
,
1993
), pp.
911
912
.
37.
Lyon
,
R. J. P.
, “
Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. Part II. Rough and powdered surfaces
,” NASA Report CR-100,
1964
, p.
264
.
38.
Lyon
,
R. J. P.
and
Green
,
A. A.
, “
Reflectance and remittance of terrain in the mid-infrared (6–25 µm) region
,” in
Infrared and Roman Spectroscopy of Lunar and Terrestrial Minerals
, edited by
Karr
,
C.
 Jr.
,
(
Academic Press
,
New York
,
1975
), pp.
165
195
.
39.
Mainzer
,
A. K.
, “
NEOCam: The near-earth object camera
,”
Bull. Am. Astron. Soc.
38
,
568
(
2009
).
40.
Maturilli
,
A.
and
Helbert
,
J.
, “
Characterization, testing, calibration, and validation of the Berlin emissivity database
,”
J. Appl. Remote Sens.
8
,
084985
(
2014
).
41.
Maturilli
,
A.
 et al., “
Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars express and MERTIS on Bepi-Colombo
,”
Planet. Space Sci.
54
,
1057
1064
(
2006
).
42.
Maturilli
,
A.
 et al., “
Characterization of asteroid analogues by means of emission and reflectance spectroscopy in the 1- to 100-µm spectral range
,”
Earth, Planets Space
68
,
113
(
2016
).
43.
McKay
,
D. S.
 et al., “
JSC-1: A new lunar soil simulant
,” in
Engineering, Construction, and Operations in Space IV
(
American Society of Civil Engineers
,
1994
), Vol. 2, pp.
857
866
.
44.
Millán
,
L.
,
Thomas
,
I.
, and
Bowles
,
N.
, “
Lunar regolith thermal gradients and emission spectra: Modeling and validation
,”
J. Geophys. Res.
116
,
E12003
, https://doi.org/10.1029/2011je003874 (
2011
).
45.
Nicodemus
,
F. E.
, “
Directional reflectance and emissivity of an opaque surface
,”
Appl Opt.
4
,
767
775
(
1965
).
46.
Okada
,
T.
 et al., “
Thermal infrared imaging experiments of C-type asteroid 162173 Ryugu on Hayabusa2
,”
Space Sci. Rev.
208
,
255
286
(
2017
).
47.
Piqueux
,
S.
and
Christensen
,
P. R.
, “
A model of thermal conductivity for planetary soils: 1. Theory for unconsolidated soils
,”
J. Geophys. Res.
114
,
E09005
, https://doi.org/10.1029/2008je003308 (
2009
).
48.
Presley
,
M. A.
and
Christensen
,
P. R.
, “
Thermal conductivity measurements of particulate materials 1. A review
,”
J. Geophys. Res.: Planets
102
,
6535
6549
, https://doi.org/10.1029/96je03302 (
1997
).
49.
Rewick
,
R. T.
and
Messerschmidt
,
R. G.
, “
A simple device for studying FT-IR emission spectra of solid surfaces
,”
Appl. Spectrosc.
45
,
297
301
(
1991
).
50.
Ruff
,
S. W.
 et al., “
Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration
,”
J. Geophys. Res.: Solid Earth
102
,
14899
14913
(
1997
).
51.
Ruff
,
S. W.
 et al., “
The rocks of Gusev Crater as viewed by the Mini-TES instrument
,”
J. Geophys. Res.: Planets
111
,
E12S18
, https://doi.org/10.1029/2006je002747 (
2006
).
52.
Salisbury
,
J. W.
and
Wald
,
A.
, “
The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals
,”
Icarus
96
,
121
128
(
1992
).
53.
Salisbury
,
J. W.
and
Walter
,
L. S.
, “
Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces
,”
J. Geophys. Res.
94
,
9192
9202
, https://doi.org/10.1029/jb094ib07p09192 (
1989
).
54.
Salisbury
,
J. W.
,
D’Aria
,
D. M.
, and
Jarosewich
,
E.
, “
Midinfrared (2.5–13.5 µm) reflectance spectra of powdered stony meteorites
,”
Icarus
92
,
280
297
(
1991a
).
55.
Salisbury
,
J. W.
,
Walter
,
L. S.
,
Vergo
,
N.
, and
D’Aria
,
D. M.
,
Infrared (2.1–25 µm) Spectra of Minerals
(
Johns Hopkins University Press
,
Baltimore, MD
,
1991b
).
56.
Salisbury
,
J. W.
,
Wald
,
A.
, and
D’Aria
,
D. M.
, “
Thermal–infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements
,”
J. Geophys. Res.: Solid Earth
99
,
11897
11911
, https://doi.org/10.1029/93jb03600 (
1994
).
57.
Shirley
,
K. A.
and
Glotch
,
T. D.
, “
Particle size effects on mid-IR spectra of lunar analog minerals in a simulated lunar environment
,”
J. Geophys. Res.: Planets
124
,
970
988
, https://doi.org/10.1029/2018JE005533 (
2019
).
58.
Sibille
,
L.
 et al., “
Lunar regolith simulant materials: Recommendations for standardization, production, and usage
,” NASA Technical Reports 2006-214605,
2006
.
59.
Taylor
,
L. A.
,
Pieters
,
C. M.
, and
Britt
,
D.
, “
Evaluations of lunar regolith simulants
,”
Planet. Space Sci.
126
,
1
7
(
2016
).
60.
Thomas
,
I. R.
 et al., “
A new experimental setup for making thermal emission measurements in a simulated lunar environment
,”
Rev. Sci. Instrum.
83
,
124502
(
2012
).
61.
Vernazza
,
P.
 et al., “
High surface porosity as the origin of emissivity features in asteroid spectra
,”
Icarus
221
,
1162
1172
(
2012
).
62.
Williams
,
J. P.
,
Paige
,
D. A.
,
Greenhagen
,
B. T.
, and
E.
Sefton-Nash
, “
The global surface temperatures of the Moon as measured by the Diviner lunar radiometer experiment
,”
Icarus
283
,
300
325
(
2017
).
63.
Xiao
,
Y.
 et al., “
Characterization of near-room-temperature thermal emitters
,” in
Advanced Photonics 2017, OSA Technical Digest
(
OSA
,
2017
), abstract NoW1C.2.
64.
Xiao
,
Y.
 et al., “
Peculiarities of near-room-temperature thermal-emission measurements using FTIR spectroscopy
,” in
Conference on Lasers and Electro-Optics, OSA Technical Digest
(
OSA
,
2018
), abstract AF3M.7.
65.
Yang
,
Y.
 et al., “
Data reduction of FTIR thermal emission measurements under cold vacuum conditions: Processing of interferograms vs. spectra
,” in
Lunar and Planetary Science Conference XLIX
,
2018
, abstract 1803.
66.
Yu
,
L.
and
Ji
,
J.
, “
Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu
,”
Mon. Not. R. Astron. Soc.
452
,
368
375
(
2015
).
67.
Zeng
,
X.
 et al., “
Geotechnical properties of JSC-1A lunar soil simulant
,”
J. Aerosp. Eng.
23
,
111
116
(
2009
).
You do not currently have access to this content.