We report on a new versatile experimental setup for in situ Rutherford backscattering spectrometry at solid-liquid interfaces which enables investigations of electric double layers directly and in a quantitative manner. A liquid cell with a three-electrode arrangement is mounted in front of the beam line, and a thin Si3N4 window (thickness down to 150 nm) separates the vacuum of the detector chamber from the electrolyte in the cell. By minimizing the contribution of the window to the measurement, a large variety of elements at the solid-liquid interface with sensitivities far below one monolayer can be monitored. The attachment of Ba onto the Si3N4 surface as a function of contact time and pH value of the electrolyte solution was chosen as an example system. From our measurement, we can not only follow the evolution of the double layer but also derive limits for the point of zero charge for the Si3N4 surface. Our findings of 5.7pHPZC6.2 are in good agreement with values found in the literature obtained by other techniques. Despite focusing on a specific system in this work, the presented setup allows for a large variety of in situ investigations at solid-liquid interfaces such as, but not limited to, tracing electrochemical reactions and monitoring segregation, adsorption, and dissolution and corrosion processes.

1.
H.
von Helmholtz
, “
Studien ueber electrische grenzschichten
,”
Ann. Phys.
243
,
337
382
(
1879
).
2.
H.
Wang
and
L.
Pilon
, “
Accurate simulations of electric double layer capacitance of ultramicroelectrodes
,”
J. Phys. Chem. C
115
,
16711
16719
(
2011
).
3.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
(
Wiley
,
New York
,
2001
), Vol. 2, p.
482
.
4.
M.
Kosmulski
, “
Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review
,”
Adv. Colloid Interface Sci.
238
,
1
61
(
2016
).
5.
D.
Fuerstenau
 et al., “
Zeta potentials in the flotation of oxide and silicate minerals
,”
Adv. Colloid Interface Sci.
114
,
9
26
(
2005
).
6.
X.
Cao
,
D.
Jia
,
D.
Li
,
L.
Cui
, and
J.
Liu
, “
One-step co-electrodeposition of hierarchical radial NixP nanospheres on Ni foam as highly active flexible electrodes for hydrogen evolution reaction and supercapacitor
,”
Chem. Eng. J.
348
,
310
318
(
2018
).
7.
S.
Manne
,
J.
Cleveland
,
H.
Gaub
,
G.
Stucky
, and
P.
Hansma
, “
Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer
,”
Langmuir
10
,
4409
4413
(
1994
).
8.
F.
Gao
,
X.
Du
,
X.
Hao
,
S.
Li
,
J.
Zheng
,
Y.
Yang
,
N.
Han
, and
G.
Guan
, “
Electrical double layer ion transport with cell voltage-pulse potential coupling circuit for separating dilute lead ions from wastewater
,”
J. Membr. Sci.
535
,
20
27
(
2017
).
9.
Q.
Xie
,
Y.
Liu
,
J.
Wu
, and
Q.
Liu
, “
Ions tuning water flooding experiments and interpretation by thermodynamics of wettability
,”
J. Pet. Sci. Eng.
124
,
350
358
(
2014
).
10.
T. G.
Drummond
,
M. G.
Hill
, and
J. K.
Barton
, “
Electrochemical DNA sensors
,”
Nat. Biotechnol.
21
,
1192
(
2003
).
11.
R. D.
Munje
,
S.
Muthukumar
,
A. P.
Selvam
, and
S.
Prasad
, “
Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics
,”
Sci. Rep.
5
,
14586
(
2015
).
12.
D.
Spitzner
,
U.
Bergmann
,
S.
Apelt
,
R. A.
Boucher
, and
H.-P.
Wiesmann
, “
Reversible switching of icing properties on pyroelectric polyvenylidene fluoride thin film coatings
,”
Coatings
5
,
724
736
(
2015
).
13.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
,
845
854
(
2008
).
14.
P.
Sharma
and
T.
Bhatti
, “
A review on electrochemical double-layer capacitors
,”
Energy Convers. Manage.
51
,
2901
2912
(
2010
).
15.
J.
Lyklema
, “
Interfacial potentials: Measuring the immeasurable?
,”
Substantia
1
,
75
93
(
2017
).
16.
M. T.
Alam
,
M. M.
Islam
,
T.
Okajima
, and
T.
Ohsaka
, “
Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces
,”
Electrochem. Commun.
9
,
2370
2374
(
2007
).
17.
H.-J.
Butt
and
M.
Kappl
,
Surface and Interfacial Forces
(
John Wiley & Sons
,
2018
).
18.
L.
Bergström
and
R. J.
Pugh
, “
Interfacial characterization of silicon nitride powders
,”
J. Am. Ceram. Soc.
72
,
103
109
(
1989
).
19.
J.
Sonnefeld
, “
Determination of surface charge density parameters of silicon nitride
,”
Colloids Surf., A
108
,
27
31
(
1996
).
20.
H.
Catalette
,
J.
Dumonceau
, and
P.
Ollar
, “
Sorption of cesium, barium and europium on magnetite
,”
J. Contam. Hydrol.
35
,
151
159
(
1998
).
21.
D.
Macdonald
, “
Some advantages and pitfalls of electrochemical impedance spectroscopy
,”
Corrosion
46
,
229
242
(
1990
).
22.
A.
Sacco
, “
Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells
,”
Renewable Sustainable Energy Rev.
79
,
814
829
(
2017
).
23.
D.
Ende
and
K.
Mangold
, “
Impedance spectroscopy
,”
Chem. Unserer Zeit
27
,
134
140
(
1993
).
24.
R.
Sprycha
, “
Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential
,”
J. Colloid Interface Sci.
127
,
1
11
(
1989
).
25.
A. V.
Delgado
,
F.
González-Caballero
,
R. J.
Hunter
,
L. K.
Koopal
, and
J.
Lyklema
, “
Measurement and interpretation of electrokinetic phenomena
,” Technical Report 10,
International Union of Pure and Applied Chemistry
,
2005
.
26.
S.
Shiraishi
,
M.
Kibe
,
T.
Yokoyama
,
H.
Kurihara
,
N.
Patel
,
A.
Oya
,
Y.
Kaburagi
, and
Y.
Hishiyama
, “
Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect
,”
Appl. Phys. A
82
,
585
591
(
2006
).
27.
S.
Axnanda
,
E. J.
Crumlin
,
B.
Mao
,
S.
Rani
,
R.
Chang
,
P. G.
Karlsson
,
M. O.
Edwards
,
M.
Lundqvist
,
R.
Moberg
,
P.
Ross
 et al., “
Using ‘tender’ x-ray ambient pressure x-ray photoelectron spectroscopy as a direct probe of solid-liquid interface
,”
Sci. Rep.
5
,
9788
(
2015
).
28.
M. A.
Brown
,
Z.
Abbas
,
A.
Kleibert
,
R. G.
Green
,
A.
Goel
,
S.
May
, and
T. M.
Squires
, “
Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface
,”
Phys. Rev. X
6
,
011007
(
2016
).
29.
G.
Andersson
and
H.
Morgner
, “
Investigations on solutions of tetrabutylonium salts in formamide with NICISS and ICISS: Concentration depth profiles and composition of the outermost layer
,”
Surf. Sci.
445
,
89
99
(
2000
).
30.
M. J.
Bedzyk
,
G. M.
Bommarito
,
M.
Caffrey
, and
T. L.
Penner
, “
Diffuse-double layer at a membrane-aqueous interface measured with x-ray standing waves
,”
Science
248
,
52
56
(
1990
).
31.
O.
Magnussen
,
J.
Hotlos
,
R.
Nichols
,
D.
Kolb
, and
R.
Behm
, “
Atomic structure of Cu adlayers on Au (100) and Au (111) electrodes observed by in situ scanning tunneling microscopy
,”
Phys. Rev. Lett.
64
,
2929
(
1990
).
32.
R.
Raiteri
,
B.
Margesin
, and
M.
Grattarola
, “
An atomic force microscope estimation of the point of zero charge of silicon insulators
,”
Sens. Actuators, B
46
,
126
(
1998
).
33.
I.
Siretanu
,
D.
Ebeling
,
M. P.
Andersson
,
S. S.
Stipp
,
A.
Philipse
,
M. C.
Stuart
,
D.
Van Den Ende
, and
F.
Mugele
, “
Direct observation of ionic structure at solid-liquid interfaces: A deep look into the Stern layer
,”
Sci. Rep.
4
,
4956
(
2014
).
34.
C. D.
Bain
, “
Sum-frequency vibrational spectroscopy of the solid/liquid interface
,”
J. Chem. Soc., Faraday Trans.
91
,
1281
1296
(
1995
).
35.
A.
Ghaemi
,
M.
Torab-Mostaedi
, and
M.
Ghannadi-Maragheh
, “
Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder
,”
J. Hazard. Mater.
190
,
916
921
(
2011
).
36.
S. P.
Mishra
and
V. K.
Singh
, “
Radiotracer technique in adsorption study—XIII. Adsorption of barium and strontium ions on chromium(IV) oxide powder
,”
Appl. Radiat. Isot.
46
,
847
853
(
1995
).
37.
L.
Alessio
,
A.
Berlin
,
R.
Roi
, and
T.
van der Venne
, “
Biological indicators for the assessment of human exposure to industrial chemicals. Antimony, soluble barium compounds, hexane and methyl ethyl ketone, thallium and tin. Industrial health and safety
,” EUR 14815 EN,
EU
,
1994
.
38.
M.
Torab-Mostaedi
,
A.
Ghaemi
,
H.
Ghassabzadeh
, and
M.
Ghannadi-Maragheh
, “
Removal of strontium and barium from aqueous solutions by adsorption onto expanded Perlite
,”
Can. J. Chem. Eng.
89
,
1247
1254
(
2011
).
39.
U. K.
Krieger
,
T.
Huthwelker
,
C.
Daniel
,
U.
Weers
,
T.
Peter
, and
W. A.
Lanford
, “
Rutherford backscattering to study the near-surface region of volatile liquids and solids
,”
Science
295
,
1048
1050
(
2002
).
40.
K.
Nakajima
,
E.
Zolboo
,
T.
Ohashi
,
M.
Lisal
, and
K.
Kimura
, “
Perfect composition depth profiling of ionic liquid surfaces using high-resolution RBS/ERDA
,”
Anal. Sci.
32
,
1089
1094
(
2016
).
41.
R.
Kötz
,
J.
Gobrecht
,
S.
Stucki
, and
R.
Pixley
, “
In situ Rutherford backscattering spectroscopy for electrochemical interphase analysis
,”
Electrochim. Acta
31
,
169
172
(
1986
).
42.
K.
Padmanabhan
,
P.
Drallos
,
R.
Alexander
, and
J.
Buchholz
, “
Ion channeling through a thin Si-liquid interface
,”
Appl. Phys. Lett.
48
,
578
580
(
1986
).
43.
J.
Forster
,
D.
Phillips
,
J.
Gulens
,
D.
Harrington
, and
R.
Tapping
, “
Ion backscattering studies of the liquid-solid interface
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
28
,
385
390
(
1987
).
44.
J.
Forster
,
D.
Phillips
,
J.
Gulens
,
R.
Tapping
,
T.
Alexander
,
J.
Leslie
, and
J.
Davies
, “
Anomalous penetration of Cs, Ba and Tl through thin Si films
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
44
,
195
198
(
1989
).
45.
A.
Hightower
,
B.
Koel
, and
T.
Felter
, “
A study of iodine adlayers on polycrystalline gold electrodes by in situ electrochemical Rutherford backscattering (ECRBS)
,”
Electrochim. Acta
54
,
1777
1783
(
2009
).
46.
K.
Morita
,
J.
Yuhara
,
R.
Ishigami
,
B.
Tsuchiya
,
K.
Soda
,
K.
Saitoh
,
S.
Yamamoto
,
P.
Goppelt-Langer
,
Y.
Aoki
,
H.
Takeshita
 et al., “
An in situ RBS system for measuring nuclides adsorbed at the liquid-solid interface
,”
Radiat. Phys. Chem.
49
,
603
608
(
1997
).
47.
N.
De Jonge
and
F. M.
Ross
, “
Electron microscopy of specimens in liquid
,”
Nat. Nanotechnol.
6
,
695
(
2011
).
48.
M.
Herrmann
,
J.
Schilm
,
G.
Michael
,
J.
Meinhardt
, and
R.
Flegler
, “
Corrosion of silicon nitride materials in acidic and basic solutions and under hydrothermal conditions
,”
J. Eur. Ceram. Soc.
23
,
585
594
(
2003
).
49.
M.
Herrmann
, “
Corrosion of silicon nitride materials in aqueous solutions
,”
J. Am. Ceram. Soc.
96
,
3009
3022
(
2013
).
50.
M.
Mayer
, “
SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA
,”
AIP Conf. Proc.
475
,
541
(
1999
).
51.
L. S.
Čerović
,
S. K.
Milonjić
,
D.
Bahloul-Hourlier
, and
B.
Doucey
, “
Surface properties of silicon nitride powders
,”
Colloids Surf., A
197
,
147
156
(
2002
).
52.
V. A.
Hackley
and
S. G.
Malghan
, “
The surface chemistry of silicon nitride powder in the presence of dissolved ions
,”
J. Mater. Sci.
29
,
4420
4430
(
1994
).
53.
R.
Raiteri
,
S.
Martinola
, and
M.
Grattarola
, “
pH-dependent charge density at the insulator-electrolyte interface probed by a scanning force microscope
,”
Biosens. Bioelectron.
11
,
1009
1017
(
1996
).
54.
S.-H.
Loh
and
S. P.
Jarvis
, “
Visualization of ion distribution at the mica-electrolyte interface
,”
Langmuir
26
,
9176
9178
(
2010
).
55.
T.
Baimpos
,
B. R.
Shrestha
,
S.
Raman
, and
M.
Valtiner
, “
Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3M Li+ and Cs+ electrolyte solutions
,”
Langmuir
30
,
4322
4332
(
2014
).
56.
C.
Park
,
P. A.
Fenter
,
K. L.
Nagy
, and
N. C.
Sturchio
, “
Hydration and distribution of ions at the mica-water interface
,”
Phys. Rev. Lett.
97
,
016101
(
2006
).
57.
K. A.
Lovering
,
A. K.
Bertram
, and
K. C.
Chou
, “
New information on the ion-identity-dependent structure of Stern layer revealed by sum frequency generation vibrational spectroscopy
,”
J. Phys. Chem. C
120
,
18099
18104
(
2016
).
You do not currently have access to this content.