We present a unique laser sintering setup that allows real time studies of the structural evolution during laser sintering of polymer particles. The device incorporates the main features of classical selective laser sintering machines for 3D printing of polymers and at the same time allows in situ visualization of the sintering dynamics with optical microscopy as well as X-ray scattering. A main feature of the setup is the fact that it provides local access to one particle-particle bridge during sintering. In addition, due to the small scale of the device and the specific laser arrangement process, parameters such as the temperature, laser energy, laser pulse duration, and spot size can be precisely controlled. The sample chamber provides heating up to 360 °C, which allows for sintering of commodity as well as high performance polymers. The latter parameters are controlled by the use of a visible light laser combined with an acousto-optic modulator for pulsing, which allows small and precise spot sizes and pulse times and pulse energies as low as 500 μs and 17 μJ. The macrostructural evolution of the particle bridge during sintering is followed via optical imaging at high speed and resolution. Placing the setup in high flux synchrotron radiation with a fast detector simultaneously allows in situ time-resolved X-ray characterizations. To demonstrate the capabilities of the device, we studied the laser sintering of two spherical PA12 particles. The setup provides crucial real-time information concerning the sintering dynamics as well as crystallization kinetics, which was not accessible up to now.

1.
C. R.
Deckard
, U.S. patent US4863538A (
17 October 1989
).
2.
J. P.
Kruth
,
T. L. X.
Wang
, and
L.
Froyen
,
Assem. Autom.
23
(
4
),
357
(
2003
).
3.
K. H.
Tan
,
C. K.
Chua
,
K. F.
Leong
,
C. M.
Cheah
,
W. S.
Gui
,
W. S.
Tan
, and
F. E.
Wiria
,
Bio-Med. Mater. Eng.
15
(
1-2
),
113
(
2005
), available at https://content.iospress.com/download/bio-medical-materials-and-engineering/bme346?id=bio-medical-materials-and-engineering%2Fbme346.
5.
E.
Radstok
, “
Rapid tooling
,”
Rapid Prototyping J.
5
(
4
),
164
(
1999
).
6.
M.
Schmid
,
A.
Amado
, and
K.
Wegener
,
J. Mater. Res.
29
,
1824
(
2014
).
7.
E.
MacDonald
and
R.
Wicker
,
Science
353
(
6307
),
2093
(
2016
).
8.
F. S.
Fogliatto
,
S.
Flavio
, and
G. J. C. D.
Silveira
,
Mass Customization: Engineering and Man-Aging Global Operations
(
Springer Science
,
2010
).
9.
I.
Gibson
,
D. W.
Rosen
, and
B.
Stucker
,
Design for Additive Manufacturing
(
Springer
,
2010
).
10.
N.
Hopkinson
,
C. E.
Majewski
, and
H.
Zarringhalam
,
CIRP Ann.
58
(
1
),
197
(
2009
).
11.
R. D.
Goodridge
,
C. J.
Tuck
, and
R. J. M.
Hague
,
Prog. Mater. Sci.
57
,
229
(
2012
).
12.
H.
Zarringhalam
,
C.
Majewski
, and
N.
Hopkinson
,
Rapid Prototyping J.
15
,
126
(
2009
).
13.
E.
Moeskops
,
N.
Kamperman
,
B.
van de Vorst
, and
R.
Knopppers
, in
Proceedings of SFF
,
Austin, USA
,
2004
.
14.
M.
Vasquez
,
B.
Haworth
, and
N.
Hopkinson
,
Polym. Eng. Sci.
53
,
1230
(
2013
).
15.
C. T.
Bellehumeur
,
M. K.
Bisaria
, and
J.
Vlachopoulos
,
Polym. Eng. Sci.
36
,
2198
(
1996
).
16.
C. T.
Bellehumeur
,
M.
Kontopoulou
, and
J.
Vlachopoulos
,
Rheol. Acta
37
,
270
(
1998
).
17.
S.
Aid
,
A.
Eddhahak
,
Z.
Ortega
,
D.
Froelich
, and
A.
Tcharkhtchi
,
J. Mater. Sci.
52
,
11725
(
2017
).
18.
C.
Balemans
,
N. O.
Jaensson
,
M. A.
Hulsen
, and
P. D.
Anderson
,
Addit. Manuf.
24
,
528
(
2018
).
19.
I.
Gibson
and
D.
Shi
,
Rapid Prototyping J.
3
,
129
(
1997
).
20.
R. J.
Roe
 et al,
Methods of X-Ray and Neutron Scattering in Polymer Science
(
Oxford University Press on Demand
,
2000
).
21.
W.
Zhu
,
C.
Yan
,
Y.
Shi
,
S.
Wen
,
J.
Liu
, and
Y.
Shi
,
Mater. Des.
82
,
37
(
2015
).
22.
J.
Chang
,
Z.
Wang
,
X.
Tang
,
F.
Tian
,
K.
Ye
, and
L.
Li
,
Rev. Sci. Instrum.
89
,
025101
(
2018
).
23.
S.
Rendon
,
J.
Fang
,
W. R.
Burghardt
, and
R. A.
Bubeck
,
Rev. Sci. Instrum.
80
,
043902
(
2009
).
24.
E.
Troisi
,
M.
van Drongelen
,
H.
Caelers
,
G.
Portale
, and
G.
Peters
,
Eur. Polym. J.
74
,
190
(
2016
).
25.
J. E.
Seppala
and
K. D.
Migler
,
Addit. Manuf.
12
,
71
(
2016
).
26.
L. A.
Northcutt
,
S. V.
Orski
,
K. B.
Migler
, and
A. P.
Kotula
,
Polymer
154
,
182
(
2018
).
27.
C. L. A.
Leung
,
S.
Marussi
,
R. C.
Atwood
,
M.
Towrie
,
P. J.
Withers
, and
P. D.
Lee
,
Nat. Commun.
9
,
1355
(
2018
).
28.
Q.
Guo
,
C.
Zhao
,
L. I.
Escano
,
Z.
Young
,
L.
Xiong
,
K.
Fezzaa
,
W.
Everhart
,
B.
Brown
,
T.
Sun
, and
L.
Chen
,
Acta Mater.
151
,
169
(
2018
).
29.
C.
Zhao
,
K.
Fezzaa
,
R. W.
Cunningham
,
H.
Wen
,
F.
De Carlo
,
L.
Chen
,
A. D.
Rollett
, and
T.
Sun
,
Sci. Rep.
7
,
3602
(
2017
).
30.
P.
Hejmady
,
L. C. A.
van Breemen
,
P. D.
Anderson
, and
R.
Cardinaels
,
Soft Matter
15
,
1373
(
2019
).
31.
W. M.
Steen
and
J.
Mazumder
,
Laser Material Processing
(
Springer Science & Business Media
,
2010
).
32.
G.
Portale
,
D.
Cavallo
,
G. C.
Alfonso
,
D.
Hermida-Merino
,
M.
van Drongelen
,
L.
Balzano
,
G. W. M.
Peters
,
J. G. P.
Goossens
, and
W.
Bras
,
J. Appl. Crystallogr.
46
(
6
),
1681
(
2013
).
33.
A. P.
Hammersley
 et al, European Synchrotron Radiation Facility Internal Report ESRF97HA02T,
1997
, Vol. 68, p. 58.
34.
R.
Androsch
,
M. L.
Di Lorenzo
, and
C.
Schick
,
Eur. Polym. J.
96
,
361
(
2017
).
35.
F.
Paolucci
,
P. C. R. D.
Baeten
,
B.
Goderis
, and
G. W. M.
Peters
,
Polymer
155
,
187
(
2018
).
36.
C. Y.
Liu
,
J.
He
,
R.
Keunings
, and
C.
Bailly
,
Macromolecules
39
(
25
),
8867
(
2006
).
37.
L.
Verbelen
,
S.
Dadbakhsh
,
M.
Van den Eynde
,
J. P.
Kruth
,
B.
Goderis
, and
P.
Van Puyvelde
,
Eur. Polym. J.
75
,
163
(
2016
).
38.
B. B.
Sauer
and
G. T.
Dee
,
Macromolecules
35
(
18
),
7024
(
2002
).
39.
M.
Yuan
,
T. T.
Diller
,
D.
Bourell
, and
J.
Beaman
,
Rapid Prototyping J.
19
(
6
),
437
(
2013
).
40.
H.
Kawamoto
and
K.
Tsuji
,
Adv. Powder Technol.
22
,
602
(
2011
).
41.
M.
Wu
,
T.
Cubaud
, and
C. M.
Ho
,
Phys. Fluids
16
,
L51
(
2004
).
43.
O.
Pokluda
,
C. T.
Bellehumeur
, and
J.
Vlachopoulos
,
AIChE J.
43
,
3253
(
1997
).
44.
E.
Scribben
,
D.
Baird
, and
P.
Wapperom
,
Rheol. Acta
45
,
825
(
2006
).
45.
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
,
Handbook of Heat Transfer
(
McGraw-Hill
,
1998
), Vol. 3.
46.
F. P.
Incropera
,
A. S.
Lavine
,
T. L.
Bergman
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2007
).
47.
L.
Li
,
M. H. J.
Koch
, and
W. H.
de Jeu
,
Macromolecules
36
,
1626
(
2003
).
48.
N.
Dencheva
,
T. G.
Nunes
,
M. J.
Oliveira
, and
Z.
Denchev
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
3720
(
2005
).
49.
C.
Ramesh
,
Macromolecules
32
,
5704
(
1999
).
50.
S.
Dadbakhsh
,
L.
Verbelen
,
O.
Verkinderen
,
D.
Strobbe
,
P. V.
Puyvelde
, and
J. P.
Kruth
,
Eur. Polym. J.
92
,
250
(
2017
).
51.
N.
Hiramatsu
,
K.
Haraguchi
, and
H.
Susumu
,
Jpn. J. Appl. Phys., Part 1
22
,
335
(
1983
).
52.
S.
Dupin
,
O.
Lame
,
C.
Barrès
, and
J.-Y.
Charmeau
,
Eur. Polym. J.
48
,
1611
(
2012
).
53.
E. M.
Troisi
,
H. J. M.
Caelers
, and
G. W. M.
Peters
,
Macromolecules
50
(
10
),
3868
(
2017
).
You do not currently have access to this content.