Cryogenic quantum sensing techniques are developing alongside the ever-increasing requirements for noiseless experimental environments. For instance, several groups have isolated internal system vibrations from cold heads in closed-cycle dilution refrigerators. However, these solutions often do not account for external vibrations, necessitating novel strategies to isolate the entire cryogenic systems from their environments in a particular set of raised cryostats. Here, we introduce a dual-stage external active vibration-isolation solution in conjunction with a closed-cycle dilution refrigerator that isolates it from the environment. This dual stage includes two sets of active attenuators and a customized steel tower for supporting experimental probes at heights of 3 m from the floor. Both stages achieve 20–40 dB of attenuation with the active systems engaged, corresponding to levels of vibration in the VC-G range (a standardized Vibration Criterion appropriate for extremely quiet research spaces) on the cryostat’s room temperature baseplate and the steel tower. Our unique vibration isolation solution therefore expands the applications of modern cryogenic equipment beyond exclusively quiet specialty buildings, rendering such equipment suitable for interdisciplinary, open-floor research centers.

1.
G.
Batey
,
A.
Casey
,
M. N.
Cuthbert
,
A. J.
Matthews
,
J.
Saunders
, and
A.
Shibahara
,
New J. Phys.
15
,
113034
(
2013
).
2.
M.
Pelliccione
,
A.
Sciambi
,
J.
Bartel
,
A. J.
Keller
, and
D.
Goldhaber-Gordon
,
Rev. Sci. Instrum.
84
,
033703
(
2013
).
3.
M.
Hashisaka
,
Y.
Yamauchi
,
K.
Chida
,
S.
Nakamura
,
K.
Kobayashi
, and
T.
Ono
,
Rev. Sci. Instrum.
80
,
096105
(
2009
).
4.
D.
Schmoranzer
,
S.
Kumar
,
A.
Luck
,
E.
Collin
,
X.
Liu
,
T.
Metcalf
,
G.
Jernigan
, and
A.
Fefferman
,
J. Low Temp. Phys.
196
,
268
(
2018
).
5.
I.
Sochnikov
,
A.
Shaulov
,
Y.
Yeshurun
,
G.
Logvenov
, and
I.
Bozovic
,
Nat. Nanotechnol.
5
,
516
(
2010
).
6.
I.
Sochnikov
,
A. J.
Bestwick
,
J. R.
Williams
,
T. M.
Lippman
,
I. R.
Fisher
,
D.
Goldhaber-Gordon
,
J. R.
Kirtley
, and
K. A.
Moler
,
Nano Lett.
13
,
3086
(
2013
).
7.
I.
Sochnikov
,
L.
Maier
,
C. A.
Watson
,
J. R.
Kirtley
,
C.
Gould
,
G.
Tkachov
,
E. M.
Hankiewicz
,
C.
Brüne
,
H.
Buhmann
,
L. W.
Molenkamp
, and
K. A.
Moler
,
Phys. Rev. Lett.
114
,
066801
(
2015
).
8.
C.
Herrera
,
J.
Cerbin
,
K.
Dunnett
,
A. V.
Balatsky
, and
I.
Sochnikov
, e-print arXiv:1808.03739 Cond-Mat (
2018
).
9.
C.
Herrera
and
I.
Sochnikov
, e-print arXiv:1907.01733 Cond-Mat (
2019
).
10.
R.
Kalra
,
A.
Laucht
,
J. P.
Dehollain
,
D.
Bar
,
S.
Freer
,
S.
Simmons
,
J. T.
Muhonen
, and
A.
Morello
,
Rev. Sci. Instrum.
87
,
073905
(
2016
).
11.
E.
Olivieri
,
J.
Billard
,
M.
De Jesus
,
A.
Juillard
, and
A.
Leder
,
Nucl. Instrum. Methods Phys. Res., Sect. A
858
,
73
(
2017
).
12.
Y.
Shperber
,
N.
Vardi
,
E.
Persky
,
S.
Wissberg
,
M. E.
Huber
, and
B.
Kalisky
,
Rev. Sci. Instrum.
90
,
053702
(
2019
).
13.
L. B.-V.
Horn
,
Z.
Cui
,
J. R.
Kirtley
, and
K. A.
Moler
,
Rev. Sci. Instrum.
90
,
063705
(
2019
).
14.
S.
Zhang
,
D.
Huang
, and
S.
Wu
,
Rev. Sci. Instrum.
87
,
063701
(
2016
).
15.
J. D.
Hackley
,
D. A.
Kislitsyn
,
D. K.
Beaman
,
S.
Ulrich
, and
G. V.
Nazin
,
Rev. Sci. Instrum.
85
,
103704
(
2014
).
16.
M.
Pelliccione
,
A.
Jenkins
,
P.
Ovartchaiyapong
,
C.
Reetz
,
E.
Emmanouilidou
,
N.
Ni
, and
A. C.
Bleszynski Jayich
,
Nat. Nanotechnol.
11
,
700
(
2016
).
17.
F. P.
Quacquarelli
,
J.
Puebla
,
T.
Scheler
,
D.
Andres
,
C.
Bödefeld
,
B.
Sipos
,
C.
Dal Savio
,
A.
Bauer
,
C.
Pfleiderer
,
A.
Erb
, and
K.
Karrai
,
Microsc. Today
23
,
12
(
2015
).
18.
A. M. J.
den Haan
,
G. H. C. J.
Wijts
,
F.
Galli
,
O.
Usenko
,
G. J. C.
van Baarle
,
D. J.
van der Zalm
, and
T. H.
Oosterkamp
,
Rev. Sci. Instrum.
85
,
035112
(
2014
).
19.
M.
de Wit
,
G.
Welker
,
K.
Heeck
,
F. M.
Buters
,
H. J.
Eerkens
,
G.
Koning
,
H.
van der Meer
,
D.
Bouwmeester
, and
T. H.
Oosterkamp
,
Rev. Sci. Instrum.
90
,
015112
(
2019
).
20.
R.
Maisonobe
,
J.
Billard
,
M. D.
Jesus
,
A.
Juillard
,
D.
Misiak
,
E.
Olivieri
,
S.
Sayah
, and
L.
Vagneron
,
J. Instrum.
13
,
T08009
(
2018
).
21.
C.
Lee
,
H. S.
Jo
,
C. S.
Kang
,
G. B.
Kim
,
I.
Kim
,
S. R.
Kim
,
Y. H.
Kim
,
H. J.
Lee
,
J. H.
So
, and
Y. S.
Yoon
,
J. Instrum.
12
,
C02057
(
2017
).
22.
L.
Zhang
,
T.
Miyamachi
,
T.
Tomanić
,
R.
Dehm
, and
W.
Wulfhekel
,
Rev. Sci. Instrum.
82
,
103702
(
2011
).
23.
D.
Schiessl
,
J. R.
Kirtley
,
L.
Paulius
,
A. J.
Rosenberg
,
J. C.
Palmstrom
,
R. R.
Ullah
,
C. M.
Holland
,
Y.-K.-K.
Fung
,
M. B.
Ketchen
,
G. W.
Gibson
, and
K. A.
Moler
,
Appl. Phys. Lett.
109
,
232601
(
2016
).
24.
A.
Amick
,
M.
Gendreau
,
T.
Busch
, and
C.
Gordon
, “
Evolving criteria for research facilities: Vibration
,” in Proceedings of SPIE (
SPIE
,
San Diego, CA
,
2005
), Vol. 5933.
25.
C. G.
Gordon
, “
Generic vibration criteria for vibration-sensitive equipment
,” in Proceedings of SPIE (
SPIE
,
Denver, CO
,
1999
), Vol. 3896.

Supplementary Material

You do not currently have access to this content.