Microwave cavities oscillating in the TM110 mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material, it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity, a magnetic field strength of 2.84 ± 0.07 mT was generated at an input power of 14.2 ± 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups.

1.
O.
Scherzer
,
Z. Phys.
101
,
593
(
1936
).
2.
P. W.
Hawkes
,
Philos. Trans. R. Soc., A
367
,
3637
(
2009
).
3.
L.
Oldfield
,
J. Phys. E: Sci. Instrum.
9
,
455
(
1976
).
4.
K.
Ura
and
N.
Morimura
,
J. Vac. Sci. Technol.
10
,
948
(
1973
).
5.
T.
Hosokawa
,
H.
Fujioka
, and
K.
Ura
,
Rev. Sci. Instrum.
49
,
624
(
1978
).
7.
D. J.
Flannigan
and
A. H.
Zewail
,
Acc. Chem. Res.
45
,
1828
(
2012
).
8.
B.
Siwick
,
J. R.
Dwyer
,
R. E.
Jordan
, and
R. J. D.
Miller
,
Science
302
,
1382
(
2003
).
9.
Y.
Morimoto
and
P.
Baum
,
Nat. Phys.
14
,
252
(
2018
).
10.
F.
Carbone
,
B.
Barwick
,
O.
Kwon
,
H. S.
Park
,
J. S.
Baskin
, and
A. H.
Zewail
,
Chem. Phys. Lett.
468
,
107
(
2008
).
11.
R. M.
van der Veen
,
T. J.
Penfold
, and
A. H.
Zewail
,
Struct. Dyn.
2
,
024302
(
2015
).
12.
G.
Berruto
,
I.
Madan
,
Y.
Murooka
,
G. M.
Vanacore
,
E.
Pomarico
,
J.
Rajeswari
,
R.
Lamb
,
P.
Huang
,
A. J.
Kruchkov
,
Y.
Togawa
,
T.
LaGrange
,
D.
McGrouther
,
H. M.
Rønnow
, and
F.
Carbone
,
Phys. Rev. Lett.
120
,
117201
(
2018
).
13.
T.
van Oudheusden
,
P. L. E. M.
Pasmans
,
S. B.
van der Geer
,
M. J.
de Loos
,
M. J.
van der Wiel
, and
O. J.
Luiten
,
Phys. Rev. Lett.
105
,
264801
(
2010
).
14.
P.
Musumeci
,
J. T.
Moody
,
C. M.
Scoby
,
M. S.
Gutierrez
,
M.
Westfall
, and
R. K.
Li
,
J. Appl. Phys.
108
,
114513
(
2010
).
15.
J.
Maxson
,
D.
Cesar
,
G.
Calmasini
,
A.
Ody
,
P.
Musumeci
, and
D.
Alesini
,
Phys. Rev. Lett.
118
,
154802
(
2017
).
16.
W.
Verhoeven
,
J. F. M.
van Rens
,
M. A. W.
van Ninhuijs
,
W. F.
Toonen
,
E. R.
Kieft
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Struct. Dyn.
3
,
054303
(
2016
).
17.
W.
Verhoeven
,
J. F. M.
van Rens
,
E. R.
Kieft
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Ultramicroscopy
188
,
85
(
2018
).
18.
A.
Feist
,
N.
Bach
,
N. R.
da Silva
,
T.
Danz
,
M.
Möller
,
K. E.
Prieve
,
T.
Domröse
,
J. G.
Gatzmann
,
S.
Rost
,
J.
Schauss
,
S.
Strauch
,
R.
Bormann
,
M.
Sivis
,
S.
Schäfer
, and
C.
Ropers
,
Ultramicroscopy
176
,
63
(
2017
).
19.
A. C.
Lassise
, “
Miniaturized RF technology for femtosecond electron microscopy
,” Ph.D. thesis,
Eindhoven University of Technology
,
2012
.
20.
J.
Qui
,
G.
Ha
,
C.
Jing
,
S. V.
Baryshev
,
B. W.
Reed
,
J. W.
Lau
, and
Y.
Zhu
,
Ultramicroscopy
161
,
130
(
2015
).
21.
I. G. C.
Weppelman
,
R. J.
Moerland
,
J. P.
Hoogenboom
, and
P.
Kruit
,
Ultramicroscopy
184
,
8
(
2018
).
22.
J. F. M.
van Rens
,
W.
Verhoeven
,
J. G. H.
Franssen
,
A. C.
Lassise
,
X. F. D.
Stragier
,
E. R.
Kieft
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Ultramicroscopy
184
,
77
(
2018
).
23.
G. J. H.
Brussaard
,
A. C.
Lassise
,
P. L. E. M.
Pasmans
,
P. H. A.
Mutsaers
,
M. J.
van der Wiel
, and
O. J.
Luiten
,
Appl. Phys. Lett.
103
,
141105
(
2013
).
24.
M.
Walbran
,
A.
Gliserin
,
K.
Jung
,
J.
Kim
, and
P.
Baum
,
Phys. Rev. Appl.
4
,
044013
(
2015
).
25.
M. R.
Otto
,
L. P.
René de Cotret
,
M. J.
Stern
, and
B. J.
Siwick
,
Struct. Dyn.
4
,
051101
(
2017
).
26.
C.
Kisielowski
,
P.
Specht
,
B.
Freitag
,
E. R.
Kieft
,
W.
Verhoeven
,
J. F. M.
van Rens
,
P. H. A.
Mutsaers
,
O. J.
Luiten
,
S.
Rozeveld
,
J.
Kang
,
A. J.
McKenna
,
P.
Nickias
, and
D. F.
Yancey
,
Adv. Funct. Mater.
29
,
1807818
(
2019
).
27.
E.
van den Bussche
and
D.
Flannigan
, “
Reducing radiation damage in soft matter with femtosecond timed single-electron packets
,” ChemRxiv:8079755 (
2019
).
28.
M. S.
Grinolds
,
V. A.
Lobastov
,
J.
Weissenrieder
, and
A. H.
Zewail
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
18427
(
2006
).
29.
D. R.
Cremons
,
D. A.
Plemmons
, and
D. J.
Flannigan
,
Nat. Commun.
7
,
11230
(
2016
).
30.
J. F. M.
van Rens
,
W.
Verhoeven
,
E. R.
Kieft
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Appl. Phys. Lett.
113
,
163104
(
2018
).
31.
A. C.
Lassise
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Rev. Sci. Instrum.
83
,
043705
(
2012
).
32.
T.
van Oudheusden
, “
Electron source for sub-relativistic single-shot femtosecond diffraction
,” Ph.D. thesis,
Eindhoven University of Technology
,
2010
.
33.
D. M.
Pozar
,
Microwave Engineering
, 4th ed. (
Wiley
,
2012
).
34.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Pearson
,
2008
).
35.
R. G.
Carter
,
IEEE Trans. Microwave Theory Tech.
49
,
918
(
2001
).
36.
See http://www.t-ceram.com/dielectric-resonators.htm for company information (last accessed October 2018).
37.
P. L. E. M.
Pasmans
, “
Ultrafast electron diffraction: An investigation of fundamental limits
,” Ph.D. thesis,
Eindhoven University of Technology
,
2014
.
38.
R. E.
Collin
,
Foundations for Microwave Engineering
, 2nd ed. (
Wiley
,
2001
).
39.
See http://www.cst.com/products/cstmws for information on the software (last accessed October 2018).
You do not currently have access to this content.