A new vertical water tunnel with global temperature control and the possibility for bubble and local heat and mass injection has been designed and constructed. The new facility offers the possibility to accurately study heat and mass transfer in turbulent multiphase flow (gas volume fraction up to 8%) with a Reynolds-number range from 1.5 × 104 to 3 × 105 in the case of water at room temperature. The tunnel is made of high-grade stainless steel permitting the use of salt solutions in excess of 15% mass fraction. The tunnel has a volume of 300 l. The tunnel has three interchangeable measurement sections of 1 m height but with different cross sections (0.3 × 0.04 m2, 0.3 × 0.06 m2, and 0.3 × 0.08 m2). The glass vertical measurement sections allow for optical access to the flow, enabling techniques such as laser Doppler anemometry, particle image velocimetry, particle tracking velocimetry, and laser-induced fluorescent imaging. Local sensors can be introduced from the top and can be traversed using a built-in traverse system, allowing, for example, local temperature, hot-wire, or local phase measurements. Combined with simultaneous velocity measurements, the local heat flux in single phase and two phase turbulent flows can thus be studied quantitatively and precisely.

1.
R. F.
Mudde
, “
Gravity-driven bubbly flows
,”
Annu. Rev. Fluid Mech.
37
,
393
423
(
2005
).
2.
F.
Risso
, “
Agitation, mixing, and transfers induced by bubbles
,”
Annu. Rev. Fluid Mech.
50
,
25
48
(
2018
).
3.
N.
Deen
,
R.
Mudde
,
J.
Kuipers
,
P.
Zehner
, and
M.
Kraume
, “
Bubble columns
,” in
Ullmann’s Encyclopedia of Industrial Chemistry
(
Wiley-VCH Verlag
,
2010
).
4.
D.
Darmana
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Detailed 3D modeling of mass transfer processes in two-phase flows with dynamic interfaces
,”
Chem. Eng. Technol.
29
,
1027
1033
(
2006
).
5.
D.
Jain
,
Y. M.
Lau
,
J.
Kuipers
, and
N. G.
Deen
, “
Discrete bubble modeling for a micro-structured bubble column
,” in
11th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering
[
Chem. Eng. Sci.
100
,
496
505
(
2013
)].
6.
G.
Besagni
,
F.
Inzoli
, and
T.
Ziegenhein
, “
Two-phase bubble columns: A comprehensive review
,”
ChemEngineering
2
,
13
(
2018
).
7.
W.-D.
Deckwer
, “
On the mechanism of heat transfer in bubble column reactors
,”
Chem. Eng. Sci.
35
,
1341
1346
(
1980
).
8.
J.
Heijnen
and
K. V.
Riet
, “
Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors
,”
Chem. Eng. J.
28
,
B21
B42
(
1984
).
9.
A. A.
Kulkarni
, “
Mass transfer in bubble column reactors: Effect of bubble size distribution
,”
Ind. Eng. Chem. Res.
46
,
2205
2211
(
2007
).
10.
A.
Kitagawa
and
Y.
Murai
, “
Natural convection heat transfer from a vertical heated plate in water with microbubble injection
,”
Chem. Eng. Sci.
99
,
215
224
(
2013
).
11.
D.
Colombet
,
D.
Legendre
,
F.
Risso
,
A.
Cockx
, and
P.
Guiraud
, “
Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction
,”
J. Fluid Mech.
763
,
254
285
(
2015
).
12.
A. T.
Tokuhiro
and
P. S.
Lykoudis
, “
Natural convection heat transfer from a vertical plate—I. Enhancement with gas injection
,”
Int. J. Heat Mass Transfer
37
,
997
1003
(
1994
).
13.
H.
Ayed
,
J.
Chahed
, and
V.
Roig
, “
Hydrodynamics and mass transfer in a turbulent buoyant bubbly shear layer
,”
AIChE J.
53
,
2742
2753
(
2007
).
14.
N. G.
Deen
and
J. A. M.
Kuipers
, “
Direct numerical simulation of wall-to liquid heat transfer in dispersed gas-liquid two-phase flow using a volume of fluid approach
,”
Chem. Eng. Sci.
102
,
268
282
(
2013
).
15.
S.
Dabiri
and
G.
Tryggvason
, “
Heat transfer in turbulent bubbly flow in vertical channels
,”
Chem. Eng. Sci.
122
,
106
113
(
2015
).
16.
B.
Gvozdić
,
E.
Alméras
,
V.
Mathai
,
X.
Zhu
,
D. P.
van Gils
,
R.
Verzicco
,
S. G.
Huisman
,
C.
Sun
, and
D.
Lohse
, “
Experimental investigation of heat transport in homogeneous bubbly flow
,”
J. Fluid Mech.
845
,
226
244
(
2018
).
17.
B.
Gvozdić
,
O.-Y.
Dung
,
E.
Alméras
,
D. P.
van Gils
,
D.
Lohse
,
S. G.
Huisman
, and
C.
Sun
, “
Experimental investigation of heat transport in inhomogeneous bubbly flow
,”
Chem. Eng. Sci.
198
,
260
(
2018
).
18.
A.
Kitagawa
,
K.
Kosuge
,
K.
Uchida
, and
Y.
Hagiwara
, “
Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection
,”
Exp. Fluids
45
,
473
484
(
2008
).
19.
K.
Sekoguchi
,
M.
Nakazatomi
, and
O.
Tanaka
, “
Forced convective heat transfer in vertical air-water bubble flow
,”
Bull. JSME
23
,
1625
1631
(
1980
).
20.
Y.
Sato
,
M.
Sadatomi
, and
K.
Sekoguchi
, “
Momentum and heat transfer in two-phase bubble flow—I. Theory
,”
Int. J. Multiphase Flow
7
,
167
177
(
1981
).
21.
Y.
Sato
,
M.
Sadatomi
, and
K.
Sekoguchi
, “
Momentum and heat transfer in two-phase bubble flow—II. A comparison between experimental data and theoretical calculations
,”
Int. J. Multiphase Flow
7
,
179
190
(
1981
).
22.
A.
Kitagawa
,
K.
Uchida
, and
Y.
Hagiwara
, “
Effects of bubble size on heat transfer enhancement by sub-millimeter bubbles for laminar natural convection along a vertical plate
,”
Int. J. Heat Fluid Flow
30
,
778
788
(
2009
).
23.
A.
Kitagawa
,
K.
Kimura
, and
Y.
Hagiwara
, “
Experimental investigation of water laminar mixed-convection flow with sub-millimeter bubbles in a vertical channel
,”
Exp. Fluids
48
,
509
519
(
2010
).
24.
P. T.
Nguyen
,
M. A.
Hampton
,
A. V.
Nguyen
, and
G. R.
Birkett
, “
The influence of gas velocity, salt type and concentration on transition concentration for bubble coalescence inhibition and gas holdup
,”
Chem. Eng. Res. Des.
90
,
33
39
(
2012
).
25.
A.
Cartellier
, “
Optical probes for local void fraction measurements: Characterization of performance
,”
Rev. Sci. Instrum.
61
,
874
886
(
1990
).
26.
D. P. M.
van Gils
,
D.
Narezo Guzman
,
C.
Sun
, and
D.
Lohse
, “
The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow
,”
J. Fluid Mech.
722
,
317
347
(
2013
).
27.
R.
Poorte
and
A.
Biesheuvel
, “
Experiments on the motion of gas bubbles in turbulence generated by an active grid
,”
J. Fluid Mech.
461
,
127
(
2002
).
28.
D. P. M.
van Gils
, Python library for (multithreaded) communication with laboratory instruments,
University of Twente
,
2018
, https://github.com/Dennis-van-Gils.
29.
R.
Poorte
, “
On the motion of bubbles in active grid generated turbulent flows
,” Ph.D. thesis,
Universiteit Twente
,
1998
.
30.
E.
Alméras
,
F.
Risso
,
V.
Roig
,
S.
Cazin
,
C.
Plais
, and
F.
Augier
, “
Mixing by bubble-induced turbulence
,”
J. Fluid Mech.
776
,
458
474
(
2015
).
You do not currently have access to this content.