We present an analytical electrolyzer with sensors embedded within flow plates to enable direct measurement of electrolyte temperatures and pressures in real time during water electrolysis. Flow plates with either parallel or serpentine channels and a total of eight equally spaced sensors were integrated into a flow cell containing a nickel foam gas diffusion layer and an anion exchange membrane. The temperature and pressure of the electrolyte in the channels increase relative to the inlet by as much as 7.3 °C and 11.5 kPa, respectively, during electrolysis at an applied current density of 200 mA cm−2. The measured increases in temperature and pressure differ depending on the flow plate geometry: A greater increase in temperature is observed in parallel flow plates, whereas the serpentine flow plate geometry results in greater variability in pressure. This work represents the first demonstration of an analytical flow cell capable of spatially resolved operando temperature and pressure sensing within the flow channels of a water electrolyzer.

1.
N. S.
Lewis
and
D. G.
Nocera
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
15729
(
2006
).
2.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A.
Santori
, and
N. S.
Lewis
,
Chem. Rev.
110
,
6446
(
2010
).
3.
T. R.
Cook
,
D. K.
Dogutan
,
S. Y.
Reece
,
Y.
Surendranath
,
T. S.
Teets
, and
D. G.
Nocera
,
Chem. Rev.
110
,
6474
(
2010
).
5.
M.
Carmo
,
D. L.
Fritz
,
J.
Mergel
, and
D.
Stolten
,
Int. J. Hydrogen Energy
38
,
4901
(
2013
).
6.
G.
Saur
,
Wind-to-Hydrogen Project: Electrolyzer Capital Cost Study
(
National Renewable Energy Laboratory, NREL
,
Golden, CO, USA
,
2008
).
7.
K. E.
Ayers
,
E. B.
Anderson
,
C.
Capuano
,
B.
Carter
,
L.
Dalton
,
G.
Hanlon
,
J.
Manco
, and
M.
Niedzwiecki
,
ECS Trans.
33
,
3
(
2010
).
8.
Q.
Feng
,
X.
Yuan
,
G.
Liu
,
B.
Wei
,
Z.
Zhang
,
H.
Li
, and
H.
Wang
,
J. Power Sources
366
,
33
(
2017
).
9.
O. F.
Selamet
,
U.
Pasaogullari
,
D.
Spernjak
,
D. S.
Hussey
,
D. L.
Jacobson
, and
M. D.
Mat
,
Int. J. Hydrogen Energy
38
,
5823
(
2013
).
10.
K.
Onda
,
T.
Murakami
,
T.
Hikosaka
,
M.
Kobayashi
,
R.
Notu
, and
K.
Ito
,
J. Electrochem. Soc.
149
,
A1069
(
2002
).
11.
J.
van der Merwe
,
K.
Uren
,
G.
van Schoor
, and
D.
Bessarabov
,
Int. J. Hydrogen Energy
39
,
14212
(
2014
).
12.
B.
Verdin
,
F.
Fouda-Onana
,
S.
Germe
,
G.
Serre
,
P. A.
Jacques
, and
P.
Millet
,
Int. J. Hydrogen Energy
42
,
25848
(
2017
).
13.
S.
Sun
,
Y.
Xiao
,
D.
Liang
,
Z.
Shao
,
H.
Yu
,
M.
Hou
, and
B.
Yi
,
RSC Adv.
5
,
14506
(
2015
).
14.
I.
Dedigama
,
P.
Angeli
,
N.
van Dijk
,
J.
Millichamp
,
D.
Tsaoulidis
,
P. R.
Shearing
, and
D. J. L.
Brett
,
J. Power Sources
265
,
97
(
2014
).
15.
C.
Immerz
,
M.
Schweins
,
P.
Trinke
,
B.
Bensmann
,
M.
Paidar
,
T.
Bystroň
,
K.
Bouzek
, and
R.
Hanke-Rauschenbach
,
Electrochim. Acta
260
,
582
(
2018
).
16.
Two-Phase Flow and Heat Transfer Publisher
, edited by
D.
Butterworth
and
G. F.
Hewitt
(
Oxford University Press
,
1977
).
17.
W.
Du
,
L.
Zhang
,
X. T.
Bi
,
D.
Wilkinson
,
J.
Stumper
, and
H.
Wang
,
Int. J. Chem. React. Eng.
8
,
1542
(
2010
).
18.
Y.
Li
,
Z.
Kang
,
J.
Mo
,
G.
Yang
,
S.
Yu
,
D. A.
Talley
,
B.
Han
, and
F.-Y.
Zhang
,
Int. J. Hydrogen Energy
43
,
11223
(
2018
).
19.
J.
Mo
,
Z.
Kang
,
G.
Yang
,
Y.
Li
,
S. T.
Retterer
,
D. A.
Cullen
,
T. J.
Toops
,
G.
Bender
,
B. S.
Pivovar
,
J. B.
Green
, Jr.
, and
F.-Y.
Zhang
,
J. Mater. Chem. A
5
,
18469
(
2017
).
20.
M. A.
Hoeh
,
T.
Arlt
,
I.
Manke
,
J.
Banhart
,
D. L.
Fritz
,
W.
Maier
, and
W.
Lehnert
,
Electrochem. Commun.
55
,
55
(
2015
).
21.
J. R.
Hudkins
,
D. G.
Wheeler
,
B.
Peña
, and
C. P.
Berlinguette
,
Energy Environ. Sci.
9
,
3417
(
2016
).
22.
G.
Yang
,
J.
Mo
,
Z.
Kang
,
F. A.
List
,
J. B.
Green
,
S. S.
Babu
, and
F.-Y.
Zhang
,
Int. J. Hydrogen Energy
42
,
14734
(
2017
).
23.
A.
Savitzky
and
M. J. E.
Golay
,
Anal. Chem.
36
,
1627
(
1964
).
24.
S.
Farah
,
D. G.
Anderson
, and
R.
Langer
,
Adv. Drug Delivery Rev.
107
,
367
(
2016
).
25.
D.
Chaidas
,
K.
Kitsakis
,
J.
Kechagias
, and
S.
Maropoulos
,
IOP Conf. Ser.: Mater. Sci. Eng.
161
,
012033
(
2016
).
26.
I.
Dedigama
,
P.
Angeli
,
K.
Ayers
,
J. B.
Robinson
,
P. R.
Shearing
,
D.
Tsaoulidis
, and
D.
Brett
,
Int. J. Hydrogen Energy
39
,
4468
(
2014
).
27.
J.
Nie
,
Y.
Chen
,
S.
Cohen
,
B. D.
Carter
, and
R. F.
Boehm
,
Int. J. Therm. Sci.
48
,
1914
(
2009
).
28.
H.
Ito
,
T.
Maeda
,
A.
Nakano
,
Y.
Hasegawa
,
N.
Yokoi
,
C. M.
Hwang
,
M.
Ishida
,
A.
Kato
, and
T.
Yoshida
,
Int. J. Hydrogen Energy
35
,
9550
(
2010
).
29.
F.
Barreras
,
A.
Lozano
,
L.
Valiño
,
R.
Mustata
, and
C.
Marín
,
J. Power Sources
175
,
841
(
2008
).
30.
D. D. H.
Ruiz
,
A. P.
Sasmito
, and
T.
Shamim
,
ECS Trans.
58
,
99
(
2013
).
31.
S.
Garimella
,
J. D.
Killion
, and
J. W.
Coleman
,
J. Fluids Eng.
124
,
205
(
2002
).
32.
M.
Wilkinson
,
M.
Blanco
,
E.
Gu
,
J. J.
Martin
,
D. P.
Wilkinson
,
J. J.
Zhang
, and
H.
Wang
,
Electrochem. Solid-State Lett.
9
,
A507
(
2006
).

Supplementary Material

You do not currently have access to this content.