Microwave interferometry (MWI) is a nonintrusive diagnostic technique, capable of measuring small quantities of electrons present in a flame plasma. In this paper, a 94 GHz microwave interferometer is characterized and validated to perform robust and reliable measurements of electron concentrations in thermal and nonthermal plasmas in a shock tube. The MWI system is validated first by measuring the refractive index of a dielectric material. Subsequently, the system is used for measuring electron densities during the thermal ionization of argon and krypton in shock tube experiments. The measured activation energies are in good agreement with both the measured values from previous studies and theoretical values. The MWI system is finally used for measuring electron density time-histories in fuel oxidation experiments in the shock tube. The electron density profile of methane combustion shows a peak at the ignition time which agrees with pressure measurements. Experimental electron histories are also in overall agreement with predictions of the methane ion chemistry model.

1.
A.
Feng
and
Z.
Munir
, “
The effect of an electric field on self-sustaining combustion synthesis: Part I. Modeling studies
,”
Metall. Mater. Trans. B
26
,
581
586
(
1995
).
2.
K. E.
Shuler
and
J.
Weber
, “
A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames
,”
J. Chem. Phys.
22
,
491
502
(
1954
).
3.
H. F.
Calcote
, “
Ion and electron profiles in flames
,”
Symp. (Int.) Combust.
9
,
622
637
(
1963
).
4.
T. I.
Cox
,
V. G. I.
Deshmukh
,
D. A. O.
Hope
,
A. J.
Hydes
,
N. S. J.
Braithwaite
, and
N. M. P.
Benjamin
, “
The use of Langmuir probes and optical emission spectroscopy to measure electron energy distribution functions in RF-generated argon plasmas
,”
J. Appl. Phys.
20
,
820
831
(
1987
).
5.
K. A.
Aadim
,
A. A.-K.
Hussain
,
N. K.
Abdalameer
,
H. A.
Tawfeeq
, and
H. H.
Murbat
, “
Electron temperature and density measurement of plasma jet in atmospheric pressure
,”
Int. J. Novel Res. Phys. Chem. Math.
2
,
28
32
(
2015
).
6.
G. G.
Gifford
, “
Applications of optical emission spectroscopy in plasma manufacturing systems
,”
Proc. SPIE
1392
,
454
465
(
1990
).
7.
D. M.
Devia
,
L. V.
Rodriguez-Restrepo
, and
E.
Restrepo-Parra
, “
Methods employed in optical emission spectroscopy analysis: A review
,”
Ing. Cienc.
11
,
239
267
(
2015
).
8.
E.
Carbone
and
S.
Nijdam
, “
Thomson scattering on non-equilibrium low density plasmas: Principles, practices and challenges
,”
Plasma Phys. Controlled Fusion
57
,
014026
(
2015
).
9.
M. A.
Cappelli
,
N.
Gascon
, and
W. A.
Hargus
, Jr.
, “
Millimetre wave plasma interferometry in the new field of a hall plasma accelerator
,”
J. Phys. D: Appl. Phys.
39
,
4582
4588
(
2006
).
10.
B. E.
Gilchrist
,
S. G.
Ohler
, and
A. D.
Gallimore
, “
Flexible microwave system to measure the electron number density and quantify the communications impact of electric thruster plasma plumes
,”
Rev. Sci. Instrum.
68
,
1189
1194
(
1997
).
11.
K. E.
Harwell
and
R. G.
Jahn
, “
Initial ionization rates in shock-heated argon, krypton and xenon
,”
Phys. Fluids
7
,
214
222
(
1964
).
12.
A. J.
Kelly
, “
Atom-atom ionization cross sections of the noble gases–argon, krypton, and xenon
,”
J. Chem. Phys.
45
,
1723
1732
(
1966
).
13.
T. I.
McLaren
and
R. M.
Hobson
, “
Initial ionization rates and collision cross section in shock-heated argon
,”
Phys. Fluids
11
,
2162
2171
(
1968
).
14.
K.-P.
Schneider
and
C.
Park
, “
Shock tube study of ionization rates of NaCl-contaminated argon
,”
Phys. Fluids
18
,
969
981
(
1975
).
15.
Y. K.
Karasevich
, “
Kinetics of chemical ionization in shock waves: Ionization kinetics in hydrocarbon oxidation
,”
Kinet. Catal.
49
,
610
615
(
2008
).
16.
Y. K.
Karasevich
, “
Kinetics of chemical ionization in shock waves: Kinetic model of ionization in methane oxidation
,”
Kinet. Catal.
50
,
73
81
(
2009
).
17.
Y. K.
Karasevich
, “
Kinetics of chemical ionization in shock waves: IV. Kinetic model of ionization in acetylene oxidation
,”
Kinet. Catal.
50
,
617
626
(
2009
).
18.
P. A.
Vlasov
,
I. V.
Zhiltsova
,
V. N.
Smirnov
,
A. M.
Tereza
,
G. L.
Agafonov
, and
D. I.
Mikhailov
, “
Chemical ionization of n-hexane, acetylene, and methane behind reflected shock waves
,”
Combust. Sci. Technol.
190
,
57
81
(
2018
).
19.
See http://www.millitech.com for Millitech, Inc.; accessed
December 2018
.
20.
A.
Alquaity
,
E.
Es-sebbar
, and
A.
Farooq
, “
Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy
,”
Opt. Express
23
,
7217
(
2015
).
21.
A. B. S.
Alquaity
, “
Laser and mass spectrometric measurements of combustion species
,” Ph.D. thesis,
King Abdullah University of Science and Technology
,
Thuwal, Kingdom of Saudi Arabia
,
2016
.
22.
S. W.
Janson
, “
Microwave diagnostics for ion engines
,” in
23rd International Electric Propulsion Conference Seattle, WA, IEPC-93-237
(
AIAA
,
1993
), pp.
2185
2189
.
23.
F. E.
Coffield
,
S. R.
Thomas
,
D.
Lang
, and
R. D.
Stever
, “
Microwave interferometer using 94-GHz solid-state sources
,” in
10th IEEE Symposium on Fusion Engineering
(
IEEE
,
1983
).
24.
G. D.
Reed
,
W. A.
Hargus
, Jr.
, and
M. A.
Cappelli
, “
Microwave interferometry (90 GHz) for hall thruster plume density characterization
,” in
AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tuscon, AZ
(
AIAA
,
2005
).
25.
A.
Singh
,
X.
Gao
,
E.
Yavari
,
M.
Zakrzewski
,
X. H.
Cao
,
V. M.
Lubecke
, and
O.
Boric-Lubecke
, “
Data-based quadrature imbalance compensation for a CW Doppler radar system
,”
IEEE Trans. Microwave Theory Tech.
61
,
1718
1724
(
2013
).
26.
B.-K.
Park
,
S.
Yamada
, and
V.
Lubecke
, “
Measurement method for imbalance factors in direct-conversion quadrature radar system
,”
IEEE Microwave Wireless Compon. Lett.
17
,
403
405
(
2007
).
27.
F. F.
Chen
,
Plasma Physics and Controlled Fusion, Vol. 1: Plasma Physics
(
Plenum Press
,
New York and London
,
1984
).
28.
M.
Ghorannevisse
and
M.
Avakian
, “
Interferometry measurement of line average electron density in Alvand IIC tokamak
,”
Int. J. Infrared Millimeter Waves
14
,
17
22
(
1993
).
29.
M.
Mirchner
and
J. C. H.
Kruger
,
Partially Ionized Gases
(
Wiley
,
New York
,
1973
).
30.
K.
Dittmann
,
C.
Kullig
, and
J.
Meichsner
, “
160 GHz Gaussian beam microwave interferometry in low-density RF plasmas
,”
Plasma Sources Sci. Technol.
21
,
024001
(
2012
).
31.
O.
Tudisco
,
A. L.
Fabris
,
C.
Falcetta
,
L.
Accatino
,
R. D.
Angelis
,
M.
Manente
,
F.
Ferri
,
M.
Florean
,
C.
Neri
,
C.
Mazzota
,
D.
Pavarin
,
F.
Pollastrone
,
G.
Rocchi
,
A.
Selmo
,
L.
Tasinato
,
F.
Trezzolani
, and
A. A.
Tuccillo
, “
A microwave interferometer for small and tenuous plasma density measurements
,”
Rev. Sci. Instrum.
84
,
033505
(
2013
).
32.
G. A.
Cook
,
Argon, Helium, and the Rare Gases
(
Interscience
,
New York
,
1961
).
33.
J.
Elizondo
,
D.
Korneev
,
I.
Nascimento
, and
W.
de Sa
, “
TCABR interferometer
,”
Braz. J. Phys.
32
,
123
130
(
2002
).
34.
See http://www.rexolite.com for Rexolite; accessed
December 2018
.
35.
S.
Trabelsi
,
A. W.
Kraszewski
, and
S. O.
Nelson
, “
Phase-shift ambiguity in microwave dielectric properties measurements
,”
IEEE Trans. Instrum. Meas.
49
,
56
60
(
2000
).
36.
G.
Neumann
,
U.
Banziger
,
M.
Kammeyer
, and
M.
Lange
, “
Plasma-density measurements by microwave interferometry and Langmuir probes in an RF discharge
,”
Rev. Sci. Instrum.
64
,
19
25
(
1993
).
37.
D. C.
Murphy
, “
The measurement and application of electric effects in combustion
,” Ph.D. thesis,
University of California
,
Berkeley
,
2015
.
38.
D. F.
Davidson
and
R. K.
Hanson
, “
Interpreting shock tube ignition data
,” in
WSSCI Fall 2003 Meeting
,
2003
.
39.
A. B.
Alquaity
,
C.
Bingjie
,
J.
Han
,
H.
Selim
,
M.
Belhi
,
Y.
Karakaya
,
T.
Kasper
,
S. M.
Sarathy
,
F.
Bisetti
, and
A.
Farooq
, “
New insights into methane-oxygen ion chemistry
,”
Proc. Combust. Inst.
36
,
1213
1221
(
2017
).
40.
W. K.
Metcalfe
,
S. M.
Burke
,
S. S.
Ahmed
, and
H. J.
Curran
, “
A hierarchical and comparative kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels
,”
Int. J. Chem. Kinet.
45
,
638
675
(
2013
).
41.
J.
Prager
,
U.
Riedel
, and
J.
Warnatz
, “
Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames
,”
Proc. Combust. Inst.
31
,
1129
1137
(
2007
).
You do not currently have access to this content.