A new custom-designed ultrahigh vacuum (UHV) apparatus combining molecular beam techniques and in situ surface spectroscopy for reactivity measurements on complex nanostructured model surfaces is described. It has been specifically designed to study the mechanisms, kinetics, and dynamics of heterogeneously catalyzed reactions over well-defined model catalysts consisting of metal nanoparticles supported on thin oxide films epitaxially grown on metal single crystals. The reactivity studies can be performed in a broad pressure range starting from UHV up to the ambient pressure conditions. The UHV system includes (i) a preparation chamber providing the experimental techniques required for the preparation and structural characterization of single-crystal based model catalysts such as oxide supported metal particles or ordered oxide surfaces and (ii) the reaction chamber containing three molecular beams—two effusive and one supersonic, which are crossed at the same point on the sample surface, infrared reflection-absorption spectroscopy for the detection of surface-adsorbed species, and quadrupole mass spectrometry for gas phase analysis. The supersonic beam is generated in a pulsed supersonic expansion and can be modulated via a variable duty-cycle chopper. The effusive beams are produced by newly developed compact differentially pumped sources based on multichannel glass capillary arrays. Both effusive sources can be modulated by a vacuum-motor driven chopper and are capable of providing high flux and high purity beams. The apparatus contains an ambient pressure cell, which is connected to the preparation chamber via an in situ sample transfer system and provides an experimental possibility to study the reactivity of well-defined nanostructured model catalysts in a broad range of pressure conditions—up to ambient pressure—with the gas phase analysis based on gas chromatography. Additionally, a dedicated deposition chamber is connected to the preparation chamber, which is employed for the in situ functionalization of model surfaces with large organic molecules serving as promoters or modifiers of chemical reactions. We present a general overview of the apparatus as well as a description of the individual components and their interplay. The results of the test measurements involving the most important components are presented and discussed.

1.
F.
Zaera
,
Catal. Lett.
142
(
5
),
501
516
(
2012
).
2.
C. M.
Pradier
,
T.
Birchem
,
Y.
Berthier
, and
G.
Cordier
,
Catal. Lett.
29
(
3-4
),
371
378
(
1994
).
3.
P.
Gallezot
and
D.
Richard
,
Catal. Rev.
40
(
1-2
),
81
126
(
1998
).
4.
M. E.
Chiu
,
G.
Kyriakou
,
F. J.
Williams
,
D. J.
Watson
,
M. S.
Tikhov
, and
R. M.
Lambert
,
Chem. Commun.
2006
,
1283
1285
.
5.
R. A.
Sheldon
and
H.
van Bekkum
,
Fine Chemicals through Heterogeneous Catalysis
(
Wiley-VCH Verlag GmbH
,
2007
), pp.
351
471
.
6.
S. T.
Marshall
and
J. W.
Medlin
,
Surf. Sci. Rep.
66
(
5
),
173
184
(
2011
).
7.
P.
Sonstrom
and
M.
Baumer
,
Phys. Chem. Chem. Phys.
13
(
43
),
19270
19284
(
2011
).
8.
A. J.
Gellman
,
W. T.
Tysoe
, and
F.
Zaera
,
Catal. Lett.
145
(
1
),
220
232
(
2015
).
9.
S. H.
Pang
and
J. W.
Medlin
,
J. Phys. Chem. Lett.
6
(
8
),
1348
1356
(
2015
).
10.
C.-H.
Lien
and
J. W.
Medlin
,
J. Catal.
339
,
38
46
(
2016
).
11.
F.
Meemken
and
A.
Baiker
,
Chem. Rev.
117
(
17
),
11522
11569
(
2017
).
12.
C. W.
Jones
,
K.
Tsuji
, and
M. E.
Davis
,
Nature
393
(
6680
),
52
(
1998
).
13.
A. J.
McCue
,
F.-M.
McKenna
, and
J. A.
Anderson
,
Catal. Sci. Technol.
5
(
4
),
2449
2459
(
2015
).
14.
K. Y.
Lee
,
Y. W.
Lee
,
J.-H.
Lee
, and
S. W.
Han
,
Colloids Surf., A
372
(
1-3
),
146
150
(
2010
).
15.
D. J.
Snelders
,
N.
Yan
,
W.
Gan
,
G.
Laurenczy
, and
P. J.
Dyson
,
ACS Catal.
2
(
2
),
201
207
(
2012
).
16.
S. T.
Marshall
,
M.
O’Brien
,
B.
Oetter
,
A.
Corpuz
,
R. M.
Richards
,
D. K.
Schwartz
, and
J. W.
Medlin
,
Nat. Mater.
9
(
10
),
853
858
(
2010
).
17.
L.
Rodríguez-García
,
K.
Hungerbühler
,
A.
Baiker
, and
F.
Meemken
,
ACS Catal.
7
(
6
),
3799
3809
(
2017
).
18.
T.
Mallat
,
E.
Orglmeister
, and
A.
Baiker
,
Chem. Rev.
107
(
11
),
4863
4890
(
2007
).
19.
K.-H.
Dostert
,
C. P.
O’Brien
,
F.
Mirabella
,
F.
Ivars-Barceló
,
S.
Attia
,
E.
Spadafora
,
S.
Schauermann
, and
H.-J.
Freund
,
ACS Catal.
7
,
5523
5533
(
2017
).
20.
C. P.
O’Brien
,
K.-H.
Dostert
,
S.
Schauermann
, and
H.-J.
Freund
,
Chem.–Eur. J.
22
(
44
),
15856
15863
(
2016
).
21.
C. P.
O’Brien
,
K. H.
Dostert
,
M.
Hollerer
,
C.
Stiehler
,
F.
Calaza
,
S.
Schauermann
,
S.
Shaikhutdinov
,
M.
Sterrer
, and
H.-J.
Freund
,
Faraday Discuss.
188
,
309
321
(
2016
).
22.
K.-H.
Dostert
,
C. P.
O’Brien
,
F.
Ivars-Barceló
,
S.
Schauermann
, and
H.-J.
Freund
,
J. Am. Chem. Soc.
137
(
42
),
13496
13502
(
2015
).
23.
J.
Libuda
and
H.-J.
Freund
,
Surf. Sci. Rep.
57
(
7-8
),
157
298
(
2005
).
24.
W.
Ludwig
,
A.
Savara
,
S.
Schauermann
, and
H.-J.
Freund
,
ChemPhysChem
11
(
11
),
2319
2322
(
2010
).
25.
F. M.
Hoffmann
,
Surf. Sci. Rep.
3
(
2-3
),
107
192
(
1983
).
26.
H.-J.
Freund
,
M.
Bäumer
,
J.
Libuda
,
T.
Risse
,
G.
Rupprechter
, and
S.
Shaikhutdinov
,
J. Catal.
216
(
1-2
),
223
235
(
2003
).
27.
J.
Libuda
,
I.
Meusel
,
J.
Hartmann
, and
H.-J.
Freund
,
Rev. Sci. Instrum.
71
(
12
),
4395
4408
(
2000
).
28.
T.
Reisinger
,
G.
Bracco
,
S.
Rehbein
,
G.
Schmahl
,
W. E.
Ernst
, and
B. J.
Holst
,
J. Phys. Chem. A
111
(
49
),
12620
12628
(
2007
).
29.
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York, Oxford
,
1988
), Vol. 1, p.
254
.
30.
G.
Rupprechter
,
Adv. Catal.
51
,
133
263
(
2007
).
31.
G.
Rupprechter
,
H.
Unterhalt
,
M.
Morkel
,
P.
Galletto
,
L.
Hu
, and
H.-J.
Freund
,
Surf. Sci.
502
,
109
122
(
2002
).
32.
S.
Stein
,
W.
Mallard
, and
P.
Linstrom
,
NIST Chemistry WebBook
, NIST Standard Reference Database Number Vol. 69 (
National Institute of Standards and Technology
,
2003
).
33.
A.
Gambi
,
S.
Giorgianni
,
A.
Passerini
,
R.
Visinoni
, and
S. J.
Ghersetti
,
Spectrochim. Acta, Part A
36
(
10
),
871
878
(
1980
).
34.
H.
Steininger
,
S.
Lehwald
, and
H.
Ibach
,
Surf. Sci.
123
(
2-3
),
264
282
(
1982
).
35.
Y.
Ni
,
A. D.
Gordon
,
F.
Tanicala
, and
F.
Zaera
,
Angew. Chem., Int. Ed.
129
(
27
),
8071
8074
(
2017
).
36.
J. M.
Bonello
,
F. J.
Williams
, and
R. M.
Lambert
,
J. Am. Chem. Soc.
125
(
9
),
2723
2729
(
2003
).
37.
I.
Lee
,
Z.
Ma
,
S.
Kaneko
, and
F.
Zaera
,
J. Am. Chem. Soc.
130
(
44
),
14597
14604
(
2008
).
38.
V.
Demers-Carpentier
,
G.
Goubert
,
F.
Masini
,
R.
Lafleur-Lambert
,
Y.
Dong
,
S.
Lavoie
,
G.
Mahieu
,
J.
Boukouvalas
,
H.
Gao
, and
A. H.
Rasmussen
,
Science
334
(
6057
),
776
780
(
2011
).
39.
Y.
Zeng
,
F.
Masini
,
A. H.
Rasmussen
,
M. N.
Groves
,
V.
Albert
,
J.
Boukouvalas
, and
P.
McBreen
,
Surf. Sci.
676
,
17
22
(
2018
).
You do not currently have access to this content.