In this paper, we present a high-resolution, simple, and versatile imaging system for single-site resolved imaging of atoms in optical lattices. The system, which relies on an adaptable infinite conjugate two-lens design, has a numerical aperture of 0.52, which can in the ideal case be further extended to 0.57. It is optimized for imaging on the sodium D2-line but allows us to tune the objective’s diffraction limited performance between 400 nm and 1000 nm by changing the distance between the two lenses. Furthermore, the objective is designed to be integrated into a typical atomic physics vacuum apparatus where the operating distance can be large (>20 mm) and diffraction limited performance still needs to be achieved when imaging through thick vacuum windows (6 mm to 10 mm). Imaging gold nanoparticles, using a wavelength of 589 nm which corresponds to the D2-line of sodium atoms, we measure diffraction limited performance and a resolution corresponding to an Airy radius of less than 0.7 µm, enabling potential single-site resolution in the commonly used 532 nm optical lattice spacing.

1.
W. S.
Bakr
,
J. I.
Gillen
,
A.
Peng
,
S.
Fölling
, and
M.
Greiner
, “
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
,”
Nature
462
,
74
(
2009
).
2.
J. F.
Sherson
,
C.
Weitenberg
,
M.
Endres
,
M.
Cheneau
,
I.
Bloch
, and
S.
Kuhr
, “
Single-atom-resolved fluorescence imaging of an atomic Mott insulator
,”
Nature
467
,
68
(
2010
).
3.
W. S.
Bakr
,
A.
Peng
,
M. E.
Tai
,
R.
Ma
,
J.
Simon
,
J. I.
Gillen
,
S.
Fölling
,
L.
Pollet
, and
M.
Greiner
, “
Probing the superfluid-to-Mott insulator transition at the single-atom level
,”
Science
329
,
547
(
2010
).
4.
M.
Cheneau
,
P.
Barmettler
,
D.
Poletti
,
M.
Endres
,
P.
Schauß
,
T.
Fukuhara
,
C.
Gross
,
I.
Bloch
,
C.
Kollath
, and
S.
Kuhr
, “
Light-cone-like spreading of correlations in a quantum many-body system
,”
Nature
481
,
484
(
2012
).
5.
P. M.
Preiss
,
R.
Ma
,
M. E.
Tai
,
A.
Lukin
,
M.
Rispoli
,
P.
Zupancic
,
Y.
Lahini
,
R.
Islam
, and
M.
Greiner
, “
Strongly correlated quantum walks in optical lattices
,”
Science
347
,
1229
(
2015
).
6.
M.
Endres
,
M.
Cheneau
,
T.
Fukuhara
,
C.
Weitenberg
,
P.
Schauß
,
C.
Gross
,
L.
Mazza
,
M. C.
Banuls
,
L.
Pollet
,
I.
Bloch
, and
S.
Kuhr
, “
Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators
,”
Science
334
,
200
(
2011
).
7.
B.
Zimmermann
,
T.
Müller
,
J.
Meineke
,
T.
Esslinger
, and
H.
Moritz
, “
High-resolution imaging of ultracold fermions in microscopically tailored optical potentials
,”
New J. Phys.
13
,
043007
(
2011
).
8.
C.
Weitenberg
,
M.
Endres
,
J. F.
Sherson
,
M.
Cheneau
,
P.
Schauß
,
T.
Fukuhara
,
I.
Bloch
, and
S.
Kuhr
, “
Single-spin addressing in an atomic Mott insulator
,”
Nature
471
,
319
(
2011
).
9.
M.
Miranda
,
R.
Inoue
,
Y.
Okuyama
,
A.
Nakamoto
, and
M.
Kozuma
, “
Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice
,”
Phys. Rev. A
91
,
063414
(
2015
).
10.
L. W.
Cheuk
,
M. A.
Nichols
,
M.
Okan
,
T.
Gersdorf
,
V.
Ramasesh
,
W. S.
Bakr
,
T.
Lompe
, and
M. W.
Zwierlein
, “
Quantum-gas microscope for fermionic atoms
,”
Phys. Rev. Lett.
114
,
193001
(
2015
).
11.
E.
Haller
,
J.
Hudson
,
A.
Kelly
,
D. A.
Cotta
,
B.
Peaudecerf
,
G. D.
Bruce
, and
S.
Kuhr
, “
Single-atom imaging of fermions in a quantum-gas microscope
,”
Nat. Phys.
11
,
738
(
2015
).
12.
M. F.
Parsons
,
F.
Huber
,
A.
Mazurenko
,
C. S.
Chiu
,
W.
Setiawan
,
K.
Wooley-Brown
,
S.
Blatt
, and
M.
Greiner
, “
Site-resolved imaging of fermionic 6Li in an optical lattice
,”
Phys. Rev. Lett.
114
,
213002
(
2015
).
13.
W.
Alt
, “
An objective lens for efficient fluorescence detection of single atoms
,”
Optik
113
,
142
(
2002
).
14.
T. B.
Ottenstein
, “
A new objective for high resolution imaging of Bose-Einstein condensates
,” M.S. thesis,
University of Heidelberg
,
2012
.
15.
K. D.
Nelson
,
X.
LI
, and
D. S.
Weiss
, “
Imaging single atoms in a three-dimensional array
,”
Nat. Phys.
3
,
556
(
2007
).
16.
Y. R. P.
Sortais
,
H.
Marion
,
C.
Tuchendler
,
A. M.
Lance
,
M.
Lamare
,
P.
Fournet
,
C.
Armellin
,
R.
Mercier
,
G.
Messin
,
A.
Browaeys
, and
P.
Grangier
, “
Diffraction-limited optics for single-atom manipulation
,”
Phys. Rev. A
75
,
013406
(
2007
).
17.
L. M.
Bennie
,
P. T.
Starkey
,
M.
Jasperse
,
C. J.
Billington
,
R. P.
Anderson
, and
L. D.
Turner
, “
A versatile high resolution objective for imaging quantum gases
,”
Opt. Express
21
,
9011
(
2013
).
18.
J. D.
Pritchard
,
J. A.
Isaacs
, and
M.
Saffman
, “
Long working distance objective lenses for single atom trapping and imaging
,”
Rev. Sci. Instrum.
87
,
073107
(
2016
).
19.
C.
Robens
,
S.
Brakhane
,
W.
Alt
,
F.
Kleißler
,
D.
Meschede
,
G.
Moon
,
G.
Ramola
, and
A.
Alberti
, “
High numerical aperture (NA = 0.92) objective lens for imaging and addressing of cold atoms
,”
Opt. Lett.
42
,
1043
(
2017
).
20.
X.
Li
,
F.
Zhou
,
M.
Ke
,
P.
Xu
,
X.-D.
He
,
J.
Wang
, and
M.-S.
Zhan
, “
High-resolution ex vacuo objective for cold atom experiments
,”
Appl. Opt.
57
,
7584
(
2018
).
21.

The vacuum window is anti-reflection coated on both sides. On the vacuum side of the window the coating is completed by a structured, 167 nm thick indium tin oxide (ITO) layer. This coating can be used to create electric fields inside the vacuum chamber. The overall transmission of the window at the imaging wavelength of 589 nm is >90% in the regions with and >99% in the regions without ITO.

22.
Handbook of optics II; Transfer Functions Techniques
, edited by
M.
Bass
(
Optical Society of America
,
1995
), Chap. XXXII, Chapter edited by
G. D.
Boreman
.
23.
C. E.
Shannon
, “
Communication in the presence of noise
,”
Proc. IEEE
86
(
2
),
447
(
1998
);
C. E.
Shannon
This paper is reprinted from the
Proc. IRE
,
37
(
1
),
10
21
(
1949
).
24.
Handbook of Optics I: Optical Specifications
, edited by
M.
Bass
(
Optical Society of America
,
1995
), Chap. XXXV, Chapter edited by
R. R.
Shannon
.
25.
M. W.
Gempel
,
T.
Hartmann
,
T. A.
Schulze
,
K. K.
Voges
,
A.
Zenesini
, and
S.
Ospelkaus
, “
Versatile electric fields for the manipulation of ultracold NaK molecules
,”
New J. Phys.
18
,
045017
(
2016
).
26.

nanoComposix: NanoXact, BPEI, 100nm Gold Spheres, 25mL.

27.

Thorlabs: VPW42-A.

28.

For preselection Fiji (Fiji is just ImageJ) with the GDSC SMLM plugin was used.

29.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
(
2012
).
30.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.-Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
, “
Fiji: An open-source platform for biological-image analysis
,”
Nat. Methods
9
,
676
(
2012
).
You do not currently have access to this content.