The search for electric dipole moments of particles in storage rings requires the development of dedicated electrostatic deflector elements. The JEDI prototype-ring design consists of more than 50 electric deflectors of 1 m length with 60 mm spacing between the plates with electric fields of 10 MV m−1. This paper presents studies of scaled-down uncoated prototype electrodes with 10 mm radius made of stainless steel. The electric field at electrode gap distances from 1 mm to 0.05 mm increased from 15 to 90 MV m−1. In future investigations, we will study different materials and coatings at similar electrode spacings. Preparations are also underway to study large deflector elements.

1.
See http://collaborations.fz-juelich.de/ikp/jedi for Jülich Electric Dipole moment Investigations.
2.
V.
Anastassopoulos
,
S.
Andrianov
,
R.
Baartman
,
S.
Baessler
,
M.
Bai
,
J.
Benante
,
M.
Berz
,
M.
Blaskiewicz
,
T.
Bowcock
,
K.
Brown
,
B.
Casey
,
M.
Conte
,
J. D.
Crnkovic
,
N.
D’Imperio
,
G.
Fanourakis
,
A.
Fedotov
,
P.
Fierlinger
,
W.
Fischer
,
M. O.
Gaisser
,
Y.
Giomataris
,
M.
Grosse-Perdekamp
,
G.
Guidoboni
,
S.
Hac
ömeroğlu
ı,
G.
Hoffstaetter
,
H.
Huang
,
M.
Incagli
,
A.
Ivanov
,
D.
Kawall
,
Y. I.
Kim
,
B.
King
,
I. A.
Koop
,
D. M.
Lazarus
,
V.
Lebedev
,
M. J.
Lee
,
S.
Lee
,
Y. H.
Lee
,
A.
Lehrach
,
P.
Lenisa
,
P. L.
Sandri
,
A. U.
Luccio
,
A.
Lyapin
,
W.
MacKay
,
R.
Maier
,
K.
Makino
,
N.
Malitsky
,
W. J.
Marciano
,
W.
Meng
,
F.
Meot
,
E. M.
Metodiev
,
L.
Miceli
,
D.
Moricciani
,
W. M.
Morse
,
S.
Nagaitsev
,
S. K.
Nayak
,
Y. F.
Orlov
,
C. S.
Ozben
,
S. T.
Park
,
A.
Pesce
,
E.
Petrakou
,
P.
Pile
,
B.
Podobedov
,
V.
Polychronakos
,
J.
Pretz
,
V.
Ptitsyn
,
E.
Ramberg
,
D.
Raparia
,
F.
Rathmann
,
S.
Rescia
,
T.
Roser
,
H. K.
Sayed
,
Y. K.
Semertzidis
,
Y.
Senichev
,
A.
Sidorin
,
A.
Silenko
,
N.
Simos
,
A.
Stahl
,
E. J.
Stephenson
,
H.
Ströher
,
M. J.
Syphers
,
J.
Talman
,
R. M.
Talman
,
V.
Tishchenko
,
C.
Touramanis
,
N.
Tsoupas
,
G.
Venanzoni
,
K.
Vetter
,
S.
Vlassis
,
E.
Won
,
G.
Zavattini
,
A.
Zelenski
, and
K.
Zioutas
,
Rev. Sci. Instrum.
87
(
11
),
115116
(
2016
).
3.
F.
Rathmann
and
N.
Nikolaev
, “
Precursor experiments to search for permanent electric dipole moments (EDMs) of protons and deuterons at COSY
,” in
8th International Conference on Nuclear Physics at Storage Rings (STORI11), PoS STORI11 (2011) 029
,
2011
.
4.
F.
Rathmann
,
A.
Saleev
, and
N. N.
Nikolaev
,
Phys. Part. Nucl.
45
,
229
(
2014
).
5.
M.
Reiser
,
Theory and Design of Charged Particle Beams
, 2nd ed. (
Wiley Series in Beam Physics and Accelerator Technology, Wiley
,
2008
).
6.
See https://www.classe.cornell.edu/public/lab-info/cesr.html for Cornell Electron-positron Storage Ring.
7.
J. J.
Welch
,
G. W.
Codner
, and
W.
Lou
, “
Commissioning and performance of low impedance electrostatic separators for high luminosity at CESR
,” in
1999 Particle Accelerator Conference (PAC’99)
,
New York
,
March 29–April 2, 1999
.
8.
See http://www.fnal.gov for Fermi National Accelerator Laboratory.
9.
V.
Lebedev
and
V.
Shiltsev
,
Accelerator Physics at the Tevatron Collider, Particle Acceleration and Detection
(
Springer
,
New York
,
2014
).
10.
V.
Shiltsev
,
Y.
Alexahin
,
V.
Lebedev
,
P.
Lebrun
,
R. S.
Moore
,
T.
Sen
,
A.
Tollestrup
,
A.
Valishev
, and
X. L.
Zhang
,
Phys. Rev. Spec. Top.–Accel. Beams
8
,
101001
(
2005
), 266.
11.
J.
Borburgh
,
M.
Hourican
, and
A.
Prost
, “
Final results on the CERN PS electrostatic septa consolidation program
,” in
Particle Accelerator Conference, C030512
,
2003
.
12.
O.
Prokofiev
, Tevatron beam separator R&D; available from https://www.bnl.gov/edm/review/files/references/Prokofiev_separator_R&D_dec6_2005.pdf,
2005
.
13.
N. G.
Trinh
,
IEEE Trans. Power Appar. Syst.
PAS-99
(
3
),
1235
(
1980
).
14.
W.
Rogowski
,
Arch. Elektrotech.
12
(
1
),
1
(
1923
).
15.
W.
Rogowski
,
Arch. Elektrotech.
16
(
1
),
73
(
1926
).
16.
See https://quickfield.com for QuickField simulation software, Tera Analysis Ltd.
17.
See https://www.tektronix.com for Keithley picoammeter 6485.
18.
See https://tdk-electronics.tdk.com for EPCOS AG, type EPCOS EC90X and EC600X.
19.
See https://www.diodes.com for Diodes Incorporated, type BAV199.
21.

A class ISO7 clean room allows inside 1 m3 of air, a maximum of 107 particles of size >0.1 μm, and not more than 352 000 particles of size >0.5 μm.

22.
See https://www.agilent.com for Agilent TwisTorr 304.
23.
See https://www.agilent.com for Agilent TriScroll 300.
24.
See https://www.agilent.com for Agilent Vaclon Plus 300.
25.
See https://www.vacom.de for Vacom 5GVM-160CF-MV-S, copper sealed ultra-high vacuum hand gate-valve.
26.
F.
Furuta
,
T.
Nakanishi
,
S.
Okumi
,
T.
Gotou
,
M.
Yamamoto
,
M.
Miyamoto
,
M.
Kuwahara
,
N.
Yamamoto
,
K.
Naniwa
,
K.
Yasui
,
H.
Matsumoto
,
M.
Yoshioka
, and
K.
Togawa
,
Nucl. Instrum. Methods Phys. Res., Sect. A
538
(
1
),
33
(
2005
).
27.
M. A. A.
Mamun
,
A. A.
Elmustafa
,
R.
Taus
,
E.
Forman
, and
M.
Poelker
,
J. Vac. Sci. Technol., A
33
(
1
),
031604
(
2015
).
28.
See http://www.uhvdesign.com for Compact linear drive CLSM38-50-H-DLA from UHV Design.
29.
A.
Russell
,
J. Inst. Electr. Eng.
65
,
517
(
1927
).
30.
General Electric Company
,
General Electric Review, 1913
(
Forgotten Books
,
2018
), see https://www.amazon.com/dp/0365105678.
31.
G. R.
Werner
, “
Probing and modeling voltage breakdown in vacuum
,” Ph.D. thesis,
Cornell University Laboratory for Elementary-Particle Physics
,
2004
.
32.
J.
Meek
and
J.
Craggs
,
Electrical Breakdown of Gases
(
A Wiley-Interscience publication, Wiley
,
1978
).
33.
A.
Descoeudres
,
T.
Ramsvik
,
S.
Calatroni
,
M.
Taborelli
, and
W.
Wuensch
,
Phys. Rev. Spec. Top.–Accel. Beams
12
,
032001
(
2009
), 148.
You do not currently have access to this content.