In this work, we present a commercial CMOS (Complementary Metal Oxide Semiconductor) Raspberry Pi camera implemented as a Near-Infrared detector for both spatial and temporal characterization of femtosecond pulses delivered from a femtosecond Erbium Doped Fiber laser (fs-EDFL) @ 1.55 µm, based on the Two Photon Absorption (TPA) process. The capacity of the device was assessed by measuring the spatial beam profile of the fs-EDFL and comparing the experimental results with the theoretical Fresnel diffraction pattern. We also demonstrate the potential of the CMOS Raspberry Pi camera as a wavefront sensor through its a nonlinear response in a Shack-Hartmann array and for the temporal characterization of the femtosecond pulses delivered from the fs-EDFL through TPA Intensity autocorrelation measurements. The direct pulse detection and measurement, through the nonlinear response with a CMOS, is proposed as a novel and affordable high-resolution and high-sensitivity alternative to costly detectors such as CCDs, wavefront sensors and beam profilers @ 1.55 µm. The measured fluence threshold, down to 17.5 µJ/cm2, and pJ/pulse energy response represents the lowest reported values applied as a beam profiler and a TPA Shack-Hartmann wavefront sensor, to our knowledge.

1.
Hamamatsu Photonics K.K.
, Infrared detectors,
2017
.
2.
Hamamatsu Photonics K.K.
, Characteristics and use of infrared detectors,
2011
.
3.
A.
Richards
, Infrared spectral selection: It begins with the detector, FLIR Systems, Commercial Vision Systems.
4.
R. V.
Shack
and
B. C.
Platt
, “
Production and use of a lenticular Hartmann screen
,” in
Program of the 1971 Spring Meeting of the Optical Society of America
[
J. Opt. Soc. Am.
61
,
656
(
1971
)], paper MG23.
5.
B. C.
Platt
and
R.
Shack
, “
History and principles of Shack-Hartmann wavefront sensing
,”
J. Refractive Surg.
17
,
S573
(
2001
).
6.
F. M.
Dickey
,
Laser Beam Shaping: Theory and Techniques
, 2nd ed. (
CRC Press Taylor & Francis Group LLC
,
2014
).
7.
J.
Zapata-Farfan
,
J.
Garduno-Mejia
,
M.
Rosete-Aguilar
,
G.
Ascanio
, and
C. J.
Roman-Moreno
, “
A high resolution hand-held focused beam profiler
,”
Proc. SPIE
10231
,
102311F
(
2017
).
8.
OmniVision, 5 Megapixel image sensor, OV5647 datasheet, V1.0,
2009
.
9.
See https://www.thorlabs.com for CCD camera beam profiler; accessed 21 March 2019.
10.
See https://www.ophiropt.com for phosphor- coated beam profiling CCD camera; accessed 21 March 2019.
11.
See https://www.gentec-eo.com for phosphor-coated laser beam profiling CMOS cameras for IR; accessed 21 March 2019.
12.
M.
Rutkauskas
,
D. T.
Reid
,
J.
Garduño-Mejía
, and
M.
Rosete-Aguilar
, “
Time-domain measurements reveal spatial aberrations in a sub-surface two-photon microscope
,”
Appl. Opt.
56
,
5047
(
2017
).
13.
P.
Castro-Marín
,
G.
Castro-Olvera
,
J.
Garduño-Mejía
,
M.
Rosete-Aguilar
,
N. C.
Bruce
,
D. T.
Reid
, and
O. G.
Rodríguez-Herrera
, “
Autocorrelation z-scan technique for measuring the spatial and temporal distribution of femtosecond pulses in the focal region of lenses
,”
Opt. Express
25
,
14473
(
2017
).
14.
M.
Rumi
and
J. W.
Perry
, “
Two-photon absorption: An overview of measurements and principles
,”
Adv. Opt. Photonics
2
,
451
(
2010
).
15.
D. T.
Reid
,
W.
Sibbett
,
J. M.
Dudley
,
L. P.
Barry
,
B.
Thomsen
, and
J. D.
Harvey
, “
Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses
,”
Appl. Opt.
37
,
8142
(
1998
).
16.
K.
Shao
,
A.
Morisset
,
V.
Pouget
,
E.
Faraud
,
C.
Larue
,
D.
Lewis
, and
D.
McMorrow
, “
3D knife-edge characterization of two-photon absorption volume in silicon for integrated circuit testing
,”
Opt. Express
19
,
22594
(
2011
).
17.
M.
Miranda
,
M.
Kotur
,
P.
Rudawski
,
Ch.
Guo
,
A.
Harth
,
A.
L’Huillier
, and
C. L.
Arnold
, “
Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry
,”
Opt. Lett.
39
,
5142
(
2014
).
18.
L. J.
Richter
,
T. P.
Petralli-Mallow
, and
J. C.
Stephenson
, “
Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses
,”
Opt. Lett.
23
,
1594
(
1998
).
19.
K. A.
Briggman
,
L. J.
Richter
, and
J. C.
Stephenson
, “
Imaging and autocorrelation of ultrafast infrared laser pulses in the 3–11-μm range with silicon CCD cameras and photodiodes
,”
Opt. Lett.
26
,
238
, (
2001
).
20.
Y.
Takagi
,
T.
Kobayashi
, and
K.
Yoshihara
, “
Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors
,”
Opt. Lett.
17
,
658
(
1992
).
21.
F.
Xia
,
D.
Sinefeld
,
B.
Li
, and
Ch.
Xu
, “
Two-photon Shack–Hartmann wavefront sensor
,”
Opt. Lett.
42
,
1141
(
2017
).
22.
M. H.
Bartholomeus
,
C.
Smith
,
W. H.
Maes
 et al, “
X-ray imaging system, x-ray sensor, and method for manufacturing an x-ray sensor
,” patent US20180203138A1 (
July 19, 2018
).
23.
C.
Scott
,
S.
Abbaszadeh
,
S.
Ghanbarzadeh
 et al., “
Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch
,”
Proc. SPIE
9033
,
90331G-1
(
2014
).
24.
L.
Ka-Meng
,
M.
Pui-In
 et al,
Handheld Total Chemical and Biological Analysis Systems, Digital Microfluidics and Semiconductors
(
Springer
,
2017
).
25.
O.
Wada
, “
Femtosecond all-optical devices for ultrafast communication and signal processing
,”
New J. Phys.
6
,
183
(
2004
).
26.
X.
Liu
,
D.
Han
,
Z.
Sun
,
C.
Zeng
,
H.
Lu
,
D.
Mao
,
Y.
Cui
, and
F.
Wang
, “
Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes
,”
Sci. Rep.
3
,
2718
(
2013
).
27.
W.
Sibbett
,
A. A.
Lagatsky
, and
C. T. A.
Brown
, “
The development and application of femtosecond laser systems
,”
Opt. Express
20
,
6989
(
2012
).
28.
T.
Hellerer
,
A. M. K.
Enejder
, and
A.
Zumbusch
, “
Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses
,”
Appl. Phys. Lett.
85
,
25
(
2004
).
29.
I.
Rocha-Mendoza
,
W.
Langbein
, and
P.
Borri
, “
Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion
,”
Appl. Phys. Lett.
93
,
201103
(
2008
).
30.
H.
Hundertmark
,
D.
Kracht
,
D.
Wandt
, and
C.
Fallnich
, “
Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm
,”
Opt. Express
11
,
3196
(
2003
).
31.
J. W.
Nicholson
,
A. D.
Yablon
,
P. S.
Westbrook
,
K. S.
Feder
, and
M. F.
Yan
, “
High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation
,”
Opt. Express
12
,
3025
(
2004
).
32.
S.
Droste
,
G.
Ycas
,
B. R.
Washburn
,
I.
Coddington
, and
N. R.
Newbury
, “
Optical frequency comb generation based on erbium fiber lasers
,”
Nanophotonics
5
,
196
(
2016
).
33.
J.
Hecht
, “
Fiber lasers bring femtoseconds to the masses
,” Laser Focus World, https://www.laserfocusworld.com/articles/2010/01/fiber-lasers-bring.html.
34.
R. G.
Driggers
,
Encyclopedia of Optical Engineering
(
CRC Press
,
2013
), p.
2049
.
35.
Dragonfly 3.6 software, Object Research Systems, Montreal Canada.
36.
P.
Castro-Marín
,
G.
Kapellmann-Zafra
,
J.
Garduño-Mejía
,
M.
Rosete-Aguilar
, and
C. J.
Román-Moreno
, “
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses
,”
Rev. Sci. Instrum.
86
,
085114
(
2015
).
37.
F. C.
Estrada-Silva
,
J.
Garduño-Mejía
,
M.
Rosete-Aguilar
,
C. J.
Román-Moreno
, and
R.
Ortega-Martínez
, “
Aberration effects on femtosecond pulses generated by nonideal achromatic doublets
,”
Appl. Opt.
48
,
4723
(
2009
).
38.
M. A.
González-Galicia
,
M.
Rosete Aguilar
,
J.
Garduño-Mejía
,
N. C.
Bruce
, and
R.
Ortega Martínez
, “
Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: Homogenous illumination
,”
J. Opt. Soc. Am. A
28
,
1979
(
2011
).
39.
M. A.
González-Galicia
,
M.
Rosete Aguilar
,
J.
Garduño-Mejía
,
N. C.
Bruce
, and
R.
Ortega Martínez
, “
Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment
,”
J. Opt. Soc. Am. A
28
,
1990
(
2011
).
You do not currently have access to this content.