Laboratory testing is a pre-requisite for the practical application of new methods and techniques, and it is crucial in the research and development of acoustic well-logging tools. Various tools have been developed based on different acoustic logging theories and methods. Thus, these tools are equipped with different acoustic sonde structures. To meet the test requirements of different tools in a laboratory environment, we designed a general experimental system that includes hardware platform, software platform, and model wells according to the common structure of actual logging tools. Similar to the internal electrical structure of downhole tools, the hardware platform consists of several main parts, such as power supply, control and telemetering, acoustic emission, and data acquisition. The functions of this hardware platform include controlling the working sequence of the experiment, exciting the transmitter sonde, and collecting the acoustic signals received by the receiver sonde. The software platform installed in the host computer provides a human–computer interface for the experimental system to complete the data transmission between the host computer and the hardware platform, store measured data, and process the data in real time. The model wells approximate the actual engineering environment and stratum condition for system testing. A series of practical laboratory experiments is conducted in the model wells by using this experimental system. The process proves that the hardware and software of the experimental system can work in coordination, and the experimental system meets the basic testing requirements of conventional acoustic logging tools.

1.
T. W.
Geerits
,
X. M.
Tang
,
O.
Hellwig
, and
T.
Bohlen
, “
Multipole borehole acoustic theory: Source imbalances and the effects of an elastic logging tool
,”
J. Appl. Geophys.
70
,
113
143
(
2010
).
2.
Y. D.
Su
,
X. M.
Tang
,
S.
Xu
, and
C. X.
Zhuang
, “
Acoustic isolation of a monopole logging while drilling tool by combining natural stopbands of pipe extensional waves
,”
Geophys. J. Int.
202
,
439
445
(
2018
).
3.
J. E.
White
, “
Computed response of an acoustic logging tool
,”
Geophysics
33
,
302
(
2012
).
4.
J. Q.
Lu
,
X. D.
Ju
,
W. X.
Qiao
,
B. Y.
Men
, and
R. J.
Wang
, “
Azimuthally acoustic logging tool to evaluate cementing quality
,”
J. Geophys. Eng.
11
,
045006
(
2014
).
5.
X. P.
Liu
,
X. D.
Ju
,
W. X.
Qiao
,
J. Q.
Lu
,
B. Y.
Men
,
K.
Zhang
, and
Y. C.
Yao
, “
Research on test-bench for sonic logging tool
,”
Earth Sci. Res. J.
20
,
1
4
(
2016
).
6.
S.
Egerev
, U.S. patent 6,615,949 (
9 September 2003
).
7.
Y. D.
Su
,
X. M.
Tang
,
B. H.
Tan
, and
Y.
Qin
, “
A logging while drilling acoustic isolation technology by varying thickness of drill collars at a distance greater than wavelength
,”
J. Acoust. Soc. Am.
131
,
3249
(
2012
).
8.
L.
Chen
,
Y. B.
Shi
,
W.
Zhang
, and
X. E.
Liu
, “
Design of control and processing circuit for cross-dipole acoustic array logging tool
,”
Meas. Control Technol.
29
,
47
50
(
2010
) (in Chinese).
9.
J. Q.
Lu
,
X. D.
Ju
, and
B. Y.
Men
, “
Design of test platform for receiver mandrel of multi-pole array acoustic logging tool
,” in
International Conference on Fuzzy Systems and Knowledge Discovery
(
IEEE
,
Sichuan, China
,
2012
), pp.
2660
2663
.
10.
X. P.
Liu
,
X. D.
Ju
,
W. X.
Qiao
,
J. Q.
Lu
,
B. Y.
Men
, and
D.
Liu
, “
Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool
,”
J. Geophys. Eng.
13
,
295
303
(
2016
).
11.
H.
Choe
,
S.
Gorfman
,
S.
Heidbrink
,
U.
Pietsch
,
M.
Vogt
,
J.
Winter
, and
M.
Ziolkowski
, “
Multi-channel FPGA-based data-acquisition-system for time-resolved synchrotron radiation experiments
,”
IEEE Trans. Nucl. Sci.
64
(
6
),
1320
(
2017
).
12.
W.
Tang
,
H.
Sun
, and
W.
Wang
, “
A digital receiver module with direct data acquisition for magnetic resonance imaging systems
,”
Rev. Sci. Instrum.
83
,
104701
(
2012
).
13.
B. Y.
Men
,
X. D.
Ju
,
J. Q.
Lu
, and
W. X.
Qiao
, “
A synchronous serial bus for multidimensional array acoustic logging tool
,”
J. Geophys. Eng.
13
,
974
983
(
2016
).
14.
K.
Xie
,
X.
Li
,
H.
Zhang
,
M.
Yang
, and
Y.
Ye
, “
Non-contact data access with direction identification for industrial differential serial bus
,”
Rev. Sci. Instrum.
84
,
064702
(
2013
).
15.
T.
Atalik
,
M.
Deniz
,
E.
Koc
,
C. Ö.
Gultekin
,
B.
Gultekin
,
M.
Ermis
, and
I.
Cadirci
, “
Multi-DSP and -FPGA-based fully digital control system for cascaded multilevel converters used in facts applications
,”
IEEE Trans. Ind. Inf.
8
,
511
527
(
2012
).
16.
L.
Diao
,
J.
Tang
,
P. C.
Loh
,
S. B.
Yin
,
L.
Wang
, and
Z. G.
Liu
, “
An efficient DSP-FPGA-based implementation of hybrid PWM for electric rail traction induction motor control
,”
IEEE Trans. Power Electron.
33
(
4
),
3276
(
2018
).
17.
N. A.
Rodriguez
,
A.
Gómez
,
L.
Nava
,
H.
Jiménez
, and
J. A.
Soto
, “
FPGA-based data storage system on NAND flash memory in RAID 6 architecture for in-line pipeline inspection gauges
,”
IEEE Trans. Comput.
67
(
7
),
1046
(
2018
).
18.
R.
Chen
,
Z.
Qin
,
Y.
Wang
,
D.
Liu
,
Z.
Shao
, and
Y.
Guan
, “
On-demand block-level address mapping in large-scale NAND flash storage systems
,”
IEEE Trans. Comput.
64
,
1729
1741
(
2015
).
19.
M.
Martina
,
C.
Condo
,
C.
Masera
, and
M.
Zamboni
, “
A joint source/channel approach to strengthen embedded programmable devices against flash memory errors
,”
IEEE Embedded Syst. Lett.
6
,
77
80
(
2014
).
20.
S. C.
Wooh
and
Y.
Shi
, “
A simulation study of the beam steering characteristics for linear phased arrays
,”
J. Nondestr. Eval.
18
,
39
57
(
1999
).
21.
X.
Che
,
W.
Qiao
,
X.
Ju
,
J.
Lu
, and
J.
Wu
, “
An experimental study on azimuthal reception characteristics of acoustic well-logging transducers based on phased-arc arrays
,”
Geophysics
79
,
D197
D204
(
2014
).
22.
Y.
Guo
,
Q.
Yuan
,
Z.
Sun
,
K.
Logan
, and
C.
Lam
, “
Development of ultrasonic phased array systems for applications in tube and pipe inspection
,” in
Review of Progress in Quantitative Nondestructive Evaluation
(
American Institute of Physics
,
2012
), pp.
1897
1904
.
23.
B.
Kamboj
and
R.
Mehra
, “
Efficient FPGA implementation of direct digital frequency synthesizer for software radios
,”
Int. J. Comput. Appl.
37
,
25
29
(
2012
).
24.
I. A.
Finneran
,
D. B.
Holland
,
P. B.
Carroll
, and
G. A.
Blake
, “
A direct digital synthesis chirped pulse Fourier transform microwave spectrometer
,”
Rev. Sci. Instrum.
84
,
083104
(
2013
).
25.
J.
Li
,
G.
Tao
,
K.
Zhang
,
B.
Wang
, and
H.
Wang
, “
An effective data processing flow for the acoustic reflection image logging
,”
Geophys. Prospect.
62
,
530
539
(
2014
).
26.
S.
Aeron
,
S.
Bose
, and
H. P.
Valero
, “
Space-time methods for robust slowness estimation for monopole logging while drilling
,”
J. Acoust. Soc. Am.
133
,
3422
(
2013
).
27.
C.
Zhuang
,
Y.
Su
, and
X.
Tang
, “
Processing dipole acoustic logging data to image fracture network in shale gas reservoirs
,”
J. Acoust. Soc. Am.
131
,
3370
(
2012
).
You do not currently have access to this content.