Over the last decade, some studies with laboratory pair distribution function (PDF) data emerged. Yet, limited Qmax or instrumental resolution impeded in-depth structural refinements. With more advanced detector technologies, the question arose how to design novel PDF equipment for laboratories that will allow decent PDF refinements over r = 1–70 Å. It is crucial to reflect the essential requirements, namely, monochromatic X-rays, suppression of air scattering, instrumental resolution, and overall measurement times. The result is a novel PDF setup based on a STOE STADI P powder diffractometer in transmission-/Debye-Scherrer geometry with monochromatic Ag Kα1 radiation, featuring a MYTHEN2 4K detector covering a Q range of 0.3–20.5 Å−1. PDF data are collected in a moving PDF mode within 6 h. Structural signatures of liquids can be satisfactorily resolved in the PDF as shown for the ionic liquid hmimPF6. The high instrumental resolution is mirrored in low qdamp values determined from LaB6 measurements. PDF data from a powder sample of ca. 7 nm TiO2 nanoparticles were successfully refined over up to 70 Å with goodness-of-fit values Rw < 0.22 (respectively Rw = 0.18 over 30 Å), thanks to the low background and high instrumental resolution, hereby enlarging the accessible r range by several tens of Angstroms compared to previous laboratory PDF studies.

1.
S. J.
Billinge
and
M. G.
Kanatzidis
,
Chem. Commun.
749
760
(
2004
).
2.
S. J.
Billinge
and
I.
Levin
,
Science
316
(
5824
),
561
565
(
2007
).
3.
T.
Dykhne
,
R.
Taylor
,
A.
Florence
, and
S. J.
Billinge
,
Pharm. Res.
28
(
5
),
1041
1048
(
2011
).
4.
P.
Juhás
,
T.
Davis
,
C. L.
Farrow
, and
S. J. L.
Billinge
,
J. Appl. Crystallogr.
46
(
2
),
560
566
(
2013
).
5.
J.
te Nijenhuis
,
M.
Gateshki
, and
M. J.
Fransen
,
Z. Kristallogr. Suppl.
2009
(
30
),
163
169
.
6.
G.
Confalonieri
,
M.
Dapiaggi
,
M.
Sommariva
,
M.
Gateshki
,
A. N.
Fitch
, and
A.
Bernasconi
,
Powder Diffr.
30
(
S1
),
S65
S69
(
2015
).
7.
F.
Meersman
,
D.
Bowron
,
A. K.
Soper
, and
M. H.
Koch
,
Phys. Chem. Chem. Phys.
13
(
30
),
13765
13771
(
2011
).
8.
T. D.
Bennett
,
A. L.
Goodwin
,
M. T.
Dove
,
D. A.
Keen
,
M. G.
Tucker
,
E. R.
Barney
,
A. K.
Soper
,
E. G.
Bithell
,
J. C.
Tan
, and
A. K.
Cheetham
,
Phys. Rev. Lett.
104
(
11
),
115503
(
2010
).
9.
L.
Cormier
and
G. J.
Cuello
,
Geochim. Cosmochim. Acta
122
,
498
510
(
2013
).
10.
B.
Bueken
,
N.
Van Velthoven
,
T.
Willhammar
,
T.
Stassin
,
I.
Stassen
,
D. A.
Keen
,
G. V.
Baron
,
J. F. M.
Denayer
,
R.
Ameloot
,
S.
Bals
,
D.
De Vos
, and
T. D.
Bennett
,
Chem. Sci.
8
(
5
),
3939
3948
(
2017
).
11.
M.
Sommariva
,
M.
Gateshki
,
J.-A.
Gertenbach
,
J.
Bolze
,
U.
König
,
B. Ş.
Vasile
, and
V.-A.
Surdu
,
Powder Diffr.
29
(
S1
),
S47
S53
(
2014
).
12.
P. F.
Peterson
,
E. S.
Bozin
,
T.
Proffen
, and
S. J. L.
Billinge
,
J. Appl. Crystallogr.
36
,
53
64
(
2003
).
13.
T.
Donath
,
S.
Brandstetter
,
L.
Cibik
,
S.
Commichau
,
P.
Hofer
,
M.
Krumrey
,
B.
Lüthi
,
S.
Marggraf
,
P.
Müller
,
M.
Schneebeli
,
C.
Schulze-Briese
, and
J.
Wernecke
,
J. Phys.: Conf. Ser.
425
(
6
),
062001
(
2013
).
14.
V.
Honkimäki
,
J.
Sleight
, and
P.
Suortti
,
J. Appl. Crystallogr.
23
(
5
),
412
417
(
1990
).
15.
C. L.
Farrow
,
P.
Juhas
,
J. W.
Liu
,
D.
Bryndin
,
E. S.
Bozin
,
J.
Bloch
,
T.
Proffen
, and
S. J.
Billinge
,
J. Phys.: Condens. Matter
19
(
33
),
335219
(
2007
).
16.
K.
Galliez
,
P.
Deniard
,
P.-E.
Petit
,
D.
Lambertin
,
F.
Bart
, and
S.
Jobic
,
J. Appl. Crystallogr.
47
(
2
),
552
560
(
2014
).
17.
D.
Šišak Jung
,
T.
Donath
,
O.
Magdysyuk
, and
J.
Bednarcik
,
Powder Diffr.
32
,
S22
S27
(
2017
).

Supplementary Material

You do not currently have access to this content.