Piezo-driven rotator is convenient for tilted magnetic field experiments due to its precise angle control. However, the rotator itself and the sample mounted on it are difficult to be cooled down because of extra heat leaks and presumably bad thermal contacts from the piezo. Here, we report a piezo-driven sample rotation system designed for ultra-low temperature environment. The sample, as well as the rotating sample holder, can be cooled to as low as 25 mK by customized thermal links and thermal contacts. More importantly, the electron temperature in the electrical transport measurements can also be cooled down to 25 mK with the help of home-made filters. To demonstrate the application of our rotation system at ultra-low electron temperature, a measurement revealing tilt-induced localization and delocalization in the second Landau level of two-dimensional electron gas is provided.

1.
D. C.
Tsui
,
H. L.
Stormer
, and
A. C.
Gossard
,
Phys. Rev. Lett.
48
,
1559
(
1982
).
2.
M. N.
Baibich
 et al,
Phys. Rev. Lett.
61
,
2472
(
1988
).
3.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
,
4828
(
1989
).
4.
C.-Z.
Chang
 et al,
Science
340
,
167
(
2013
).
5.
A.
Das
,
Y.
Ronen
,
Y.
Most
,
Y.
Oreg
,
M.
Heiblum
, and
H.
Shtrikman
,
Nat. Phys.
8
,
887
(
2012
).
6.
V.
Mourik
,
K.
Zuo
,
S. M.
Frolov
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
,
Science
336
,
1003
(
2012
).
7.
S. R.
Elliott
and
M.
Franz
,
Rev. Mod. Phys.
87
,
137
(
2015
).
8.
J. P.
Eisenstein
,
H. L.
Stormer
,
L. N.
Pfeiffer
, and
K. W.
West
,
Phys. Rev. B
41
,
7910
(
1990
).
9.
R. R.
Du
,
A. S.
Yeh
,
H. L.
Stormer
,
D. C.
Tsui
,
L. N.
Pfeiffer
, and
K. W.
West
,
Phys. Rev. Lett.
75
,
3926
(
1995
).
10.
Y.
Liu
 et al,
Phys. Rev. Lett.
107
,
266802
(
2011
).
11.
C. R.
Dean
 et al,
Phys. Rev. Lett.
101
,
186806
(
2008
).
12.
G.
Liu
 et al,
Phys. Rev. Lett.
108
,
196805
(
2012
).
13.
C.
Zhang
 et al,
Phys. Rev. B
85
,
241302
(
2012
).
14.
X.
Lin
,
R. R.
Du
, and
X. C.
Xie
,
Nat. Sci. Rev.
1
,
564
(
2014
).
15.
J.
Falson
 et al,
Nat. Phys.
11
,
347
(
2015
).
16.
J.
Falson
 et al,
Sci. Adv.
4
,
eaat8742
(
2018
).
17.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
,
Rev. Mod. Phys.
79
,
1217
(
2007
).
18.
L. C.
Camenzind
 et al,
Nat. Commun.
9
,
3454
(
2018
).
19.
G. F.
Brennert
,
W. A.
Reed
, and
E.
Fawcett
,
Rev. Sci. Instrum.
36
,
1267
(
1965
).
20.
J. A.
Galvis
 et al,
Rev. Sci. Instrum.
86
,
013706
(
2015
).
21.
D. K.
Wagner
,
Rev. Sci. Instrum.
45
,
621
(
1974
).
22.
J. R.
Miller
,
IEEE Trans. Appl. Supercond.
13
,
1385
(
2003
).
23.
S. T.
Hannahs
and
E. C.
Palm
,
J. Low Temp. Phys.
159
,
366
(
2010
).
24.
A.
Bhattacharya
,
M. T.
Tuominen
, and
A. M.
Goldman
,
Rev. Sci. Instrum.
69
,
3563
(
1998
).
25.
T.
Shiroka
,
F.
Casola
,
J.
Mesot
,
W.
Bachmann
, and
H.-R.
Ott
,
Rev. Sci. Instrum.
83
,
093901
(
2012
).
26.
E. C.
Palm
and
T. P.
Murphy
,
Rev. Sci. Instrum.
70
,
237
(
1999
).
27.
J. S.
Xia
,
E. D.
Adams
,
N. S.
Sullivan
,
W.
Pan
,
H. L.
Stormer
, and
D. C.
Tsui
,
Int. J. Mod. Phys. B
16
,
2986
(
2002
).
28.
E.
Ohmichi
,
S.
Nagai
,
Y.
Maeno
,
T.
Ishiguro
,
H.
Mizuno
, and
T.
Nagamura
,
Rev. Sci. Instrum.
72
,
1914
(
2001
).
29.
L. A.
Yeoh
,
A.
Srinivasan
,
T. P.
Martin
,
O.
Klochan
,
A. P.
Micolich
, and
A. R.
Hamilton
,
Rev. Sci. Instrum.
81
,
113905
(
2010
).
30.
M. W.
Johnson
 et al,
Nature
473
,
194
(
2011
).
31.
33.
J.
Clarke
and
F. K.
Wilhelm
,
Nature
453
,
1031
(
2008
).
34.
Y. P.
Zhong
 et al,
Phys. Rev. Lett.
117
,
110501
(
2016
).
35.
K. Y.
Tan
,
M.
Partanen
,
R. E.
Lake
,
J.
Govenius
,
S.
Masuda
, and
M.
Möttönen
,
Nat. Commun.
8
,
15189
(
2017
).
36.
H.
Fu
 et al,
Proc. Natl. Acad. Sci. U. S. A.
113
,
12386
(
2016
).
37.
A. M. J.
den Haan
 et al,
Rev. Sci. Instrum.
85
,
035112
(
2014
).
38.
M.
Pelliccione
,
A.
Sciambi
,
J.
Bartel
,
A. J.
Keller
, and
D.
Goldhaber-Gordon
,
Rev. Sci. Instrum.
84
,
033703
(
2013
).
39.
P.
Jurcevic
,
Piezo Rotator at Ultralow Temperatures in Semiconductor Nanostructures
(
University of Basel
,
2010
).
40.
L.
Pfeiffer
,
K. W.
West
,
H. L.
Stormer
, and
K. W.
Baldwin
,
Appl. Phys. Lett.
55
,
1888
(
1989
).
41.
M. J.
Manfra
,
Annu. Rev. Condens. Matter Phys.
5
,
347
(
2014
).
42.
A.
Srinivasan
,
L. A.
Yeoh
,
T. P.
Martin
,
O.
Klochan
,
A. P.
Micolich
, and
A. R.
Hamilton
, in
2010 International Conference on Nanoscience and Nanotechnology
(
IEEE
,
Sydney
,
2010
), pp.
322
325
.
43.
J. M.
Martinis
,
M. H.
Devoret
, and
J.
Clarke
,
Phys. Rev. B
35
,
4682
(
1987
).
44.
A.
Fukushima
,
A.
Sato
,
A.
Iwasa
,
Y.
Nakamura
,
T.
Komatsuzaki
, and
Y.
Sakamoto
,
IEEE Trans. Instrum. Meas.
46
,
289
(
1997
).
45.
F. P.
Milliken
,
J. R.
Rozen
,
G. A.
Keefe
, and
R. H.
Koch
,
Rev. Sci. Instrum.
78
,
024701
(
2007
).
46.
A.
Lukashenko
and
A. V.
Ustinov
,
Rev. Sci. Instrum.
79
,
014701
(
2008
).
47.
A. B.
Zorin
,
Rev. Sci. Instrum.
66
,
4296
(
1995
).
48.
C. P.
Scheller
 et al,
Appl. Phys. Lett.
104
,
211106
(
2014
).
49.
S.
Baer
,
Transport Spectroscopy of Confined Fractional Quantum Hall Systems
(
ETH-Zürich
,
2014
).
50.
J. P.
Eisenstein
,
K. B.
Cooper
,
L. N.
Pfeiffer
, and
K. W.
West
,
Phys. Rev. Lett.
88
,
076801
(
2002
).
51.
J.
Xia
 et al,
Phys. Rev. Lett.
93
,
176809
(
2004
).
52.
N.
Deng
,
A.
Kumar
,
M. J.
Manfra
,
L. N.
Pfeiffer
,
K. W.
West
, and
G. A.
Csáthy
,
Phys. Rev. Lett.
108
,
086803
(
2012
).
53.
A. V.
Rossokhaty
,
Y.
Baum
,
J. A.
Folk
,
J. D.
Watson
,
G. C.
Gardner
, and
M. J.
Manfra
,
Phys. Rev. Lett.
117
,
166805
(
2016
).
54.
V.
Shingla
,
E.
Kleinbaum
,
A.
Kumar
,
L. N.
Pfeiffer
,
K. W.
West
, and
G. A.
Csáthy
,
Phys. Rev. B
97
,
241105
(
2018
).
55.
C. R.
Dean
 et al,
Phys. Rev. Lett.
100
,
146803
(
2008
).
56.
K. A.
Schreiber
 et al,
Nat. Commun.
9
,
2400
(
2018
).
57.
R. L.
Willett
,
Rep. Prog. Phys.
76
,
076501
(
2013
).
58.
G. A.
Csáthy
 et al,
Phys. Rev. Lett.
94
,
146801
(
2005
).
You do not currently have access to this content.