Stitching methods are increasingly used for determining the surface shape of large and high precision optical elements used in synchrotron beamlines. They consist in reconstructing the surface topography from multiple measurements on overlapping parts of the optics aperture by various algorithms. This paper is an attempt to investigate how true and accurate such a reconstruction can be. Error sources are identified and evaluated throughout the acquisition and processing steps. The analysis is based on the example SOLEIL Michelson interferometer for nano-topography, a dedicated measurement bench for stitching interferometry. We propose a method for determining the error made on the estimate of the interferometric reference surface from the stitching dataset. This determination is made before and independently of the stitching procedure itself.

1.
F.
Polack
,
M.
Thomasset
,
S.
Brochet
, and
A.
Rommeveaux
,
Nucl. Instrum. Methods Phys. Res., Sect. A
616
,
207
211
(
2010
).
2.
F.
Polack
and
M.
Thomasset
,
Nucl. Instrum. Methods Phys. Res., Sect. A
710
,
67
71
(
2013
).
3.
L.
Assoufid
,
M.
Bray
, and
D.
Shu
,
AIP Conf. Proc.
705
,
851
854
(
2004
).
4.
J.
Vidal
,
J.
Nicolas
, and
J.
Campos
,
Proc. SPIE
7390
,
73900N-1
73900N-8
(
2009
).
5.
G. D.
Ludbrook
,
S. G.
Alcock
, and
K. J. S.
Sawhney
,
Proc. SPIE
7389
,
738939-1
(
2009
).
6.
A.
Vivo
,
B.
Lantelme
,
R.
Baker
, and
R.
Barrett
,
Rev. Sci. Instrum.
87
,
051908
(
2016
).
7.
H.
Mimura
,
H.
Yumoto
,
S.
Matsuyama
,
K.
Yamamura
,
Y.
Sano
,
K.
Ueno
,
K.
Endo
,
Y.
Mori
,
M.
Yabashi
,
K.
Tamasaku
,
Y.
Nishino
,
T.
Ishikawa
, and
K.
Yamauchi
,
Rev. Sci. Instrum.
76
,
045102
(
2005
).
8.
H.
Yumoto
,
H.
Mimura
,
T.
Kimura
,
S.
Handa
,
S.
Matsuyama
,
Y.
Sanoa
, and
K.
Yamauchi
,
Surf. Interface Anal.
40
,
1023
1027
(
2008
).
9.
H.
Yumoto
,
T.
Koyama
,
S.
Matsuyama
,
K.
Yamauchi
, and
K.
Ohashi
,
Rev. Sci. Instrum.
87
,
051905
(
2016
).
10.
L.
Huang
,
J.
Nicolas
, and
M.
Idir
,
Opt. Express
26
,
20192
20202
(
2018
).
11.
L.
Huang
,
M.
Idir
,
C.
Zuo
,
T.
Wang
,
K.
Tayabaly
, and
E.
Lippmann
,
Opt. Express
26
,
23278
23286
(
2018
).
12.
M.
Thomasset
,
M.
Idir
,
F.
Polack
,
M.
Bray
, and
J. J.
Servant
,
Nucl. Instrum. Methods Phys. Res., Sect. A
710
,
7
12
(
2013
).
13.
R. E.
Parks
,
L. Z.
Shao
, and
C. J.
Evans
,
Appl. Opt.
37
,
5951
5956
(
1998
).
14.
U.
Griesmann
,
Appl. Opt.
45
,
5856
5865
(
2006
).
15.
M.
Vannoni
and
G.
Molesini
,
Opt. Express
15
,
6809
6816
(
2007
).
16.
M.
Vannoni
and
G.
Molesini
,
Opt. Express
16
,
340
354
(
2008
).
17.
H.
Lyu
,
Y.
Huang
,
B.
Sheng
, and
Z.
Ni
,
Opt. Eng.
57
,
094103
(
2018
).
18.
Z.
Han
,
L.
Chen
,
T.
Wulan
, and
R.
Zhu
,
Optik
124
,
3781
3785
(
2013
).
19.
M.
Vannoni
,
Opt. Express
22
,
3538
3546
(
2014
).
20.
K. R.
Freischlad
,
Appl. Opt.
40
,
1637
1648
(
2001
).
21.
P.
Su
,
J. H.
Burge
, and
R. E.
Parks
,
Appl. Opt.
49
,
21
31
(
2010
).
22.
D.
Su
,
E.
Miao
,
Y.
Sui
, and
H.
Yang
,
Opt. Lett.
37
,
3198
3200
(
2012
).
23.
W.
Wang
,
M.
Zhang
,
S.
Yan
,
Z.
Fan
, and
J.
Tan
,
Appl. Opt.
54
,
6186
6189
(
2015
).
24.
D.
Zhai
,
S.
Chen
,
X.
Peng
, and
G.
Tie
,
Opt. Lasers Eng.
114
,
121
128
(
2019
).
25.
P. B.
Keenan
,
Proc. SPIE
0429
,
0429-6
(
1983
).
26.
E. E.
Bloemhof
,
Opt. Lett.
35
,
2346
2348
(
2010
).
27.
E. E.
Bloemhof
,
Appl. Opt.
53
,
792
797
(
2014
).
28.
Y.
Huang
,
J.
Ma
,
R.
Zhu
,
C.
Yuan
,
L.
Chen
,
H.
Cai
, and
W.
Sun
,
Opt. Express
23
,
29687
29697
(
2015
).
29.
S.
Xue
,
S.
Chen
,
D.
Zhai
, and
F.
Shi
,
Opt. Commun.
389
,
133
143
(
2017
).
30.
O.
Acher
and
A.
Podzorov
, PCT Patent Application WO2014016526, (
2014
).
31.
Y.-Y.
Cheng
and
J. C.
Wyant
,
Appl. Opt.
24
,
3049
3052
(
1985
).
32.
K.
Goldberg
and
J.
Bokor
,
Appl. Opt.
40
,
2886
2894
(
2001
).
33.
D. C.
Ghiglia
and
M. D.
Pritt
,
Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software
(
John Wiley
,
New York
,
1998
).
34.
J.
Nicolas
,
M. L.
Ng
,
P.
Pedreira
,
J.
Campos
, and
D.
Cocco
,
Opt. Express
26
,
27212
27220
(
2018
).
You do not currently have access to this content.