The mobility on stairways is a daily challenge for seniors and people with dyskinesia. Lower limb exoskeletons can be effective assistants to improve their life quality. In this paper, we present an adaptive stair-ascending gait generation algorithm based on a depth camera for lower limb exoskeletons. We first construct a linked-list-based stairway model with the point cloud captured from the depth camera. Then, an optimal foothold point is calculated based on the linked-list stair model for gait generation. Finally, the exoskeleton takes the stair-ascending gait of healthy people as a reference and generates appropriate gait for the stair. The proposed gait generation algorithm is initially validated through holistic simulation analyses. We tested the stairway modeling algorithm on varieties of indoor and outdoor stairways and evaluated the gait generation algorithm on stairs of different height. The subjects’ stair walking tests with lower limb exoskeletons show the effectiveness of the proposed stairway modeling and gait generation approaches.

1.
W.
Lutz
,
W.
Sanderson
, and
S.
Scherbov
,
Nature
451
,
716
(
2008
).
2.
S.
Bai
,
G. S.
Virk
, and
T.
Sugar
,
Wearable Exoskeleton Systems: Design, Control and Applications
(
Institution of Engineering and Technology
,
2018
).
3.
S.
Jezernik
,
G.
Colombo
, and
M.
Morari
,
IEEE Trans. Rob. Autom.
20
,
574
(
2004
).
4.
M.
Lyu
,
W.
Chen
,
X.
Ding
,
J.
Wang
,
S.
Bai
, and
H.
Ren
,
Rev. Sci. Instrum.
87
,
104301
(
2016
).
5.
D.
Liu
,
W.
Chen
,
Z.
Pei
, and
J.
Wang
,
Rev. Sci. Instrum.
88
,
104302
(
2017
).
6.
R.
BIONICS
, Rex, https://www.rexbionics.com/, accessed March 15, 2019.
7.
A.
Esquenazi
,
M.
Talaty
,
A.
Packel
, and
M.
Saulino
,
Am. J. Phys. Med. Rehabil.
91
,
911
(
2012
).
8.
R. J.
Farris
,
H. A.
Quintero
, and
M.
Goldfarb
,
J. Med. Devices
6
,
041003
(
2012
).
9.
Y.
Sankai
, in
Robotics Research
, Springer Tracts in Advanced Robotics Vol. 66 (
International Foundation of Robotics Research
,
2010
), pp.
25
34
.
10.
E.
Bionics
, Eksohealth–ekso bionic, https://eksobionics.com/eksohealth/, accessed March 15, 2019.
11.
R. J.
Farris
,
H. A.
Quintero
, and
M.
Goldfarb
, in
2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEEE
,
2012
), pp.
1908
1911
.
12.
T.
Taketomi
and
Y.
Sankai
, in
2012 IEEE/SICE International Symposium on System Integration
(
IEEE
,
2012
), pp.
331
336
.
13.
R.
Huang
,
H.
Cheng
,
H.
Guo
,
X.
Lin
, and
J.
Zhang
,
Inf. Sci.
432
,
584
(
2018
).
14.
F.
Xu
,
X.
Lin
,
H.
Cheng
,
R.
Huang
, and
Q.
Chen
, in
2017 IEEE International Conference on Mechatronics and Automation
(
IEEE
,
Takamatsu, Japan
,
2017
), pp.
1579
1584
.
15.
A.
Ekelem
,
G.
Bastas
,
C. M.
Durrough
, and
M.
Goldfarb
,
J. Med. Devices
12
,
031009
(
2018
).
16.
C.
Zhao
,
C.-L.
Lin
,
W.
Chen
,
M.-K.
Chen
, and
J.
Wang
,
Biomed. Signal Process. Control
56
,
101680
(
2020
).
17.
S.
Wang
,
H.
Pan
,
C.
Zhang
, and
Y.
Tian
,
J. Visual Commun. Image Representation
25
,
263
(
2014
).
18.
J. A.
Delmerico
,
D.
Baran
,
P.
David
,
J.
Ryde
, and
J. J.
Corso
, in
2013 IEEE International Conference on Robotics and Automation
(
IEEE
,
2013
), pp.
2283
2290
.
19.
T. J. J.
Tang
,
W. L. D.
Lui
, and
W. H.
Li
, in
Australasian Conference on Robotics and Automation
,
2012
.
20.
R. C.
Luo
,
M.
Hsiao
, and
C.-W.
Liu
, in
2013 IEEE International Conference on Automation Science and Engineering
(
IEEE
,
2013
), pp.
318
323
.
21.
A.
Pérez-Yus
,
D.
Gutiérrez-Gómez
,
G.
Lopez-Nicolas
, and
J.
Guerrero
,
Comput. Vision Image Understanding
154
,
192
(
2017
).
22.
N. E.
Krausz
,
T.
Lenzi
, and
L. J.
Hargrove
,
IEEE Trans. Biomed. Eng.
62
,
2576
(
2015
).
23.
A.
Ciobanu
,
A.
Morar
,
F.
Moldoveanu
,
L.
Petrescu
,
O.
Ferche
, and
A.
Moldoveanu
, in
2017 21st International Conference on Control Systems and Computer Science
(
IEEE
,
2017
), pp.
287
293
.
24.
T.
Westfechtel
,
K.
Ohno
,
B.
Mertsching
,
R.
Hamada
,
D.
Nickchen
,
S.
Kojima
, and
S.
Tadokoro
,
Int. J. Rob. Res.
37
,
1463
(
2018
).
25.
M.
Vukobratović
and
B.
Borovac
,
Int. J. Hum. Rob.
1
,
157
(
2004
).
26.
J. H.
Park
and
K. D.
Kim
, in
Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
(
IEEE
,
1998
), Vol. 4, pp.
3528
3533
.
27.
X.
Wu
,
C.
Wang
,
Y.
Ma
, and
D.
Liu
, “
Real-time gait planning for a lower limb exoskeleton robot
,” in
Wearable Exoskeleton Systems: Design, control and applications
(
Institution of Engineering and Technology
,
2018
), pp.
193
217
.
28.
H.
Yue
,
W.
Chen
,
X.
Wu
, and
J.
Zhang
, in
2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)
(
IEEE
,
2013
), pp.
205
210
.
29.
M. A.
Fischler
and
R. C.
Bolles
,
Commun. ACM
24
,
381
(
1981
).
30.
X.
Zhao
,
W.
Chen
,
X.
Yan
,
J.
Wang
, and
X.
Wu
, in
2018 Chinese Control and Decision Conference
(
IEEE
,
2018
), pp.
5018
5023
.
31.
S.
Oßwald
,
J.-S.
Gutmann
,
A.
Hornung
, and
M.
Bennewitz
, in
2011 11th IEEE-RAS International Conference on Humanoid Robots
(
IEEE
,
2011
), pp.
93
98
.
32.
D.
Holz
,
S.
Holzer
,
R. B.
Rusu
, and
S.
Behnke
,
RoboCup 2011: Robot Soccer World Cup XV
(
Springer Berlin Heidelberg
,
2012
), pp.
306
317
.
33.
C.
Feng
,
Y.
Taguchi
, and
V. R.
Kamat
, in
2014 IEEE International Conference on Robotics and Automation
(
IEEE
,
2014
), pp.
6218
6225
.
34.
J.
Demantke
,
C.
Mallet
,
N.
David
, and
B.
Vallet
,
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
5
,
97
(
2011
).
35.
R. B.
Rusu
and
S.
Cousins
, in
2011 IEEE International Conference on Robotics and Automation
(
IEEE
,
2011
), pp.
1
4
.
36.
M.
Quigley
,
K.
Conley
,
B.
Gerkey
,
J.
Faust
,
T.
Foote
,
J.
Leibs
,
R.
Wheeler
, and
A. Y.
Ng
, in
ICRA Workshop on Open Source Software
(
IEEE
,
Kobe, Japan
,
2009
), Vol. 3, p.
5
.
You do not currently have access to this content.