An experimental flow control technique is given in this paper to study the jet effect on the coflow jet’s airfoil with injection and suction and compared with the jet-off condition. The airfoil is CFJ0025-065-196, and the Reynolds number based on the airfoil’s chord length is 105. To measure the turbulence components of flow, a hot wire anemometry apparatus in a wind tunnel has been used. In this paper, the effect of the average velocity and boundary layer thickness on the coflow jet’s airfoil is analyzed. The test is done for two different coflow velocities and for different angles of attack. It is also shown that, by increasing the velocity difference between the jet and the main flow, separation is delayed, and this delay can be preserved by raising coflow velocity at higher angles of attack. So, this flow control method has a good efficiency, and it is possible to reach higher numbers of lift and lower numbers of drag coefficients.

1.
M.
Gad-el Hak
, “
Flow control: The future
,”
J. Aircr.
38
(
3
),
402
418
(
2001
).
2.
M.
Sheikholeslami
and
O.
Mahian
, “
Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems
,”
J. Cleaner Prod.
215
,
963
977
(
2019
).
3.
S.
Hoseinzadeh
,
A.
Moafi
,
A.
Shirkhani
, and
A. J.
Chamkha
, “
Numerical validation heat transfer of rectangular cross-section porous fins
,”
J. Thermophys. Heat Transfer
33
(
3
),
698
704
(
2019
).
4.
S.
Hoseinzadeh
,
R.
Ghasemiasl
,
D.
Havaei
, and
A. J.
Chamkha
, “
Numerical investigation of rectangular thermal energy storage units with multiple phase change materials
,”
J. Mol. Liq.
271
,
655
660
(
2018
).
5.
S.
Hoseinzadeh
,
P. S.
Heyns
,
A. J.
Chamkha
, and
A.
Shirkhani
, “
Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods
,”
J. Therm. Anal. Calorim.
138
,
727
735
(
2019
).
6.
S.
Hoseinzadeh
,
S. A. R.
Sahebi
,
R.
Ghasemiasl
, and
A. R.
Majidian
, “
Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)
,”
Eur. Phys. J. Plus
132
,
197
(
2017
).
7.
S.
Hoseinzadeh
,
M.
Hadi Zakeri
,
A.
Shirkhani
, and
A. J.
Chamkha
, “
Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area
,”
J. Renewable Sustainable Energy
11
,
015103
(
2019
).
8.
A.
Yari
,
S.
Hosseinzadeh
,
A. A.
Golneshan
, and
R.
Ghasemiasl
, “
Numerical simulation for thermal design of a gas water heater with turbulent combined convection
,” in
ASME International
(
ASME
,
2015
), p.
V001T03A007
.
9.
M.
Sheikholeslami
, “
New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media
,”
Comput. Methods Appl. Mech. Eng.
344
,
319
333
(
2019
).
10.
M.
Sheikholeslami
, “
Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method
,”
Comput. Methods Appl. Mech. Eng.
344
,
306
318
(
2019
).
11.
M.
Sheikholeslami
,
M. B.
Gerdroodbary
,
R.
Moradi
,
A.
Shafee
, and
Z.
Li
, “
Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel
,”
Comput. Methods Appl. Mech. Eng.
344
,
1
12
(
2019
).
12.
T.
Barbaryan
,
S.
Hoseinzadeh
,
P.
Heyns
, and
M.
Barbaryan
, “
Developing a low-fluid pressure safety valve design through a numerical analysis approach
,”
Int. J. Numer. Methods Heat Fluid Flow
(
2019
).
13.
S.
Hoseinzadeh
,
P.
Heyns
, and
H.
Kariman
, “
Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow
,”
Int. J. Numer. Methods Heat Fluid Flow
(
2019
).
14.
G.-C.
Zha
and
C.
Paxton
, “
A novel airfoil circulation augment flow control method using co-flow jet
,” NASA CP-2005-213509,
2005
; also AIAA Paper 2004-2208, 2004.
15.
G.-C.
Zha
,
W.
Gao
, and
C. D.
Paxton
, “
Jet effects on co-flow jet airfoil performance
,”
AIAA J.
45
(
6
),
1222
1231
(
2007
).
16.
B.-Y.
Wang
and
G.-C.
Zha
, “
Detached-eddy simulation of a co-flow jet airfoil at high angle of attack
,” AIAA Paper 2009-4015,
2009
.
17.
B.
Dano
,
A.
Lefebvre
, and
G.-C.
Zha
, “
Experimental investigation of jet mixing mechanism of co-flow jet airfoil
,” AIAA Paper 2010-4421,
2010
.
18.
H.-S.
Im
,
G.-C.
Zha
, and
B. P. E.
Dano
, “
Large eddy simulation of coflow jet airfoil at high angle of attack
,”
J. Fluids Eng.
136
(
2
),
021101
(
2014
).
19.
H.
Mitsudharmadi
and
Y.
Cui
, “
Implementation of co-flow jet concept on low Reynolds number airfoil
,” AIAA Paper 2010-4717,
2010
.
20.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, England
,
2000
).
21.
C.
Paxton
,
G.-C.
Zha
, and
D.
Car
, “
Design of the secondary flow system for a co-flow jet cascade
,” AIAA Paper 2004-3928,
2004
.
22.
D.
Car
,
N. J.
Kuprowicz
,
J.
Estevadeordal
,
G.-C.
Zha
, and
W.
Copenhaver
, “
Stator diffusion enhancement using a re-circulating co-flowing steady jet
,” in
ASME TURBO EXPO, 14–17 June 2004
(
ASME
,
2004
), ASME Paper GT2004-53086.
23.
G.-C.
Zha
,
B.
Carroll
,
C.
Paxton
,
A.
Conley
, and
A.
Wells
, “
High performance airfoil using co-flow jet flow control
,” AIAA Paper 2005-1260,
2005
.
24.
Y.
Shi
,
J.
Bai
,
J.
Hua
, and
T.
Yang
, “
Numerical analysis and optimization of boundary layer suction on airfoils
,”
Chin. J. Aeronaut.
28
(
2
),
357
367
(
2015
).
25.
J.
Lei
,
G.
Feng
, and
H.
Can
, “
Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number
,”
Chin. J. Aeronaut.
26
(
4
),
918
925
(
2013
).
26.
W.
Gao
,
A.
Palewicz
,
G.-C.
Zha
, and
C. D.
Paxton
, “
Numerical investigation of co-flow jet airfoil with injection only
,” AIAA Paper 2006-1061,
2006
.
27.
B.
Wang
,
B.
Haddoukessouni
,
J.
Levy
, and
G.-C.
Zha
, “
Numerical investigation of injection slot size effect on the performance of co-flow jet airfoil
,” AIAA Paper 2007-4427,
2007
.
28.
G.-C.
Zha
and
W.
Gao
, “
Analysis of jet effects on co-flow jet airfoil performance with integrated propulsion system
,” AIAA Paper 2006-102,
2006
.
29.
G. I.
Barenblatt
,
A. J.
Chorin
, and
V. M.
Prostokishin
, “
The turbulent wall jet: A triple-layered structure and incomplete similarity
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
25
),
8850
8853
(
2005
).
30.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
Investigation of airfoil boundary layer and wake development at low Reynolds numbers
,” AIAA Paper 2004-2551,
2004
.
You do not currently have access to this content.