Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe–sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.

1.
P.
Hansma
,
J.
Cleveland
,
M.
Radmacher
,
D.
Walters
,
P.
Hillner
,
M.
Bezanilla
,
M.
Fritz
,
D.
Vie
,
H.
Hansma
,
C.
Prater
,
J.
Massie
,
L.
Fukunaga
,
J.
Gurley
, and
V.
Elings
, “
Tapping mode atomic force microscopy in liquids
,”
Appl. Phys. Lett.
64
,
1738
(
1994
).
2.
S.
Zhang
,
S.-J.
Cho
,
K.
Busuttil
,
C.
Wang
,
F.
Besenbacher
, and
M.
Dong
, “
Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale
,”
Nanoscale
4
,
3105
(
2012
).
3.
T.
Ushiki
,
M.
Nakajima
,
M.
Choi
,
S.-J.
Cho
, and
F.
Iwata
, “
Scanning ion conductance microscopy for imaging biological samples in liquid: A comparative study with atomic force microscopy and scanning electron microscopy
,”
Micron
43
,
1390
(
2012
).
4.
T.
Ando
, “
High-speed atomic force microscopy and its future prospects
,”
Biophys. Rev.
10
,
285
(
2018
).
5.
J.
Seifert
,
J.
Rheinlaender
,
P.
Novak
,
Y. E.
Korchev
, and
T. E.
Schäffer
, “
Comparison of atomic force microscopy and scanning ion conductance microscopy for live cell imaging
,”
Langmuir
31
,
6807
(
2015
).
6.
P.
Hansma
,
B.
Drake
,
O.
Marti
,
S.
Gould
, and
C.
Prater
, “
The scanning ion-conductance microscope
,”
Science
243
,
641
(
1989
).
7.
S.
Del Linz
,
E.
Willman
,
M.
Caldwell
,
D.
Klenerman
,
A.
Fernández
, and
G.
Moss
, “
Contact-free scanning and imaging with the scanning ion conductance microscope
,”
Anal. Chem.
86
,
2353
(
2014
).
8.
D.
Thatenhorst
,
J.
Rheinlaender
,
T. E.
Schäffer
,
I. D.
Dietzel
, and
P.
Happel
, “
Effect of sample slope on image formation in scanning ion conductance microscopy
,”
Anal. Chem.
86
,
9838
(
2014
).
9.
L.
Steinbock
,
J.
Steinbock
, and
A.
Radenovic
, “
Controllable shrinking and shaping of glass nanocapillaries under electron irradiation
,”
Nano Lett.
13
,
1717
(
2013
).
10.
X.
Xu
,
C.
Li
,
Y.
Zhou
, and
Y.
Jin
, “
Controllable shrinking of glass capillary nanopores down to sub-10 nm by wet-chemical silanization for signal-enhanced DNA translocation
,”
ACS Sens.
2
,
1452
(
2017
).
11.
J. Y.
Sze
,
S.
Kumar
,
A. P.
Ivanov
,
S.-H.
Oh
, and
J. B.
Edel
, “
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
,”
Analyst
140
,
4828
(
2015
).
12.
D.
Pastré
,
H.
Iwamoto
,
J.
Liu
,
G.
Szabo
, and
Z.
Shao
, “
Characterization of AC mode scanning ion-conductance microscopy
,”
Ultramicroscopy
90
,
13
(
2001
).
13.
P.
Li
,
L.
Liu
,
Y.
Wang
,
Y.
Yang
,
C.
Zhang
, and
G.
Li
, “
Phase modulation mode of scanning ion conductance microscopy
,”
Appl. Phys. Lett.
105
,
053113
(
2014
).
14.
P.
Li
,
L.
Liu
,
Y.
Yang
,
L.
Zhou
,
D.
Wang
,
Y.
Wang
, and
G.
Li
, “
Amplitude modulation mode of scanning ion conductance microscopy
,”
J. Lab. Autom.
20
,
457
(
2015
).
15.
K.
McKelvey
,
S. L.
Kinnear
,
D.
Perry
,
D.
Momotenko
, and
P. R.
Unwin
, “
Surface charge mapping with a nanopipette
,”
J. Am. Chem. Soc.
136
,
13735
(
2014
).
16.
K.
McKelvey
,
D.
Perry
,
J. C.
Byers
,
A. W.
Colburn
, and
P. R.
Unwin
, “
Bias modulated scanning ion conductance microscopy
,”
Anal. Chem.
86
,
3639
(
2014
).
17.
A.
Page
,
D.
Perry
,
P.
Young
,
D.
Mitchell
,
B. G.
Frenguelli
, and
P. R.
Unwin
, “
Fast nanoscale surface charge mapping with pulsed-potential scanning ion conductance microscopy
,”
Anal. Chem.
88
,
10854
(
2016
).
18.
D.
Perry
,
R.
Al Botros
,
D.
Momotenko
,
S. L.
Kinnear
, and
P. R.
Unwin
, “
Simultaneous nanoscale surface charge and topographical mapping
,”
ACS Nano
9
,
7266
(
2015
).
19.
D.
Perry
,
B. P.
Nadappuram
,
D.
Momotenko
,
P. D.
Voyias
,
A.
Page
,
G.
Tripathi
,
B. G.
Frenguelli
, and
P. R.
Unwin
, “
Surface charge visualization at viable living cells
,”
J. Am. Chem. Soc.
138
,
3152
(
2016
).
20.
L. H.
Klausen
,
T.
Fuhs
, and
M.
Dong
, “
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
,”
Nat. Commun.
7
,
12447
(
2016
).
21.
T.
Fuhs
,
L. H.
Klausen
,
S. M.
Sønderskov
,
X.
Han
, and
M.
Dong
, “
Direct measurement of surface charge distribution in phase separating supported lipid bilayers
,”
Nanoscale
10
,
4538
(
2018
).
22.
M.
Kang
,
D.
Perry
,
C. L.
Bentley
,
G.
West
,
A.
Page
, and
P. R.
Unwin
, “
Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles
,”
ACS Nano
11
,
9525
(
2017
).
23.
Y.
Takahashi
,
A. I.
Shevchuk
,
P.
Novak
,
B.
Babakinejad
,
J.
Macpherson
,
P. R.
Unwin
,
H.
Shiku
,
J.
Gorelik
,
D.
Klenerman
,
Y. E.
Korchev
 et al, “
Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
11540
(
2012
).
24.
A.
Bruckbauer
,
L.
Ying
,
A. M.
Rothery
,
D.
Zhou
,
A. I.
Shevchuk
,
C.
Abell
,
Y. E.
Korchev
, and
D.
Klenerman
, “
Writing with DNA and protein using a nanopipet for controlled delivery
,”
J. Am. Chem. Soc.
124
,
8810
(
2002
).
25.
B.
Babakinejad
,
P.
Jönsson
,
A.
López Córdoba
,
P.
Actis
,
P.
Novak
,
Y.
Takahashi
,
A.
Shevchuk
,
U.
Anand
,
P.
Anand
,
A.
Drews
,
A.
Ferrer-Montiel
,
D.
Klenerman
, and
Y. E.
Korchev
, “
Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells
,”
Anal. Chem.
85
,
9333
(
2013
).
26.
A.
Page
,
M.
Kang
,
A.
Armitstead
,
D.
Perry
, and
P. R.
Unwin
, “
Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy
,”
Anal. Chem.
89
,
3021
(
2017
).
27.
Y.
Takahashi
,
A. I.
Shevchuk
,
P.
Novak
,
Y.
Zhang
,
N.
Ebejer
,
J. V.
Macpherson
,
P. R.
Unwin
,
A. J.
Pollard
,
D.
Roy
,
C. A.
Clifford
,
H.
Shiku
,
T.
Matsue
,
D.
Klenerman
, and
Y. E.
Korchev
, “
Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces
,”
Angew. Chem., Int. Ed.
50
,
9638
(
2011
).
28.
A.
Page
,
D.
Perry
, and
P. R.
Unwin
, “
Multifunctional scanning ion conductance microscopy
,”
Proc. R. Soc. A
473
,
20160889
(
2017
).
29.
T.
Ando
,
T.
Uchihashi
, and
T.
Fukuma
, “
High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes
,”
Prog. Surf. Sci.
83
,
337
(
2008
).
30.
T.
Ando
,
T.
Uchihashi
, and
S.
Scheuring
, “
Filming biomolecular processes by high-speed atomic force microscopy
,”
Chem. Rev.
114
,
3120
(
2014
).
31.
J.
Rheinlaender
and
T. E.
Schäffer
, “
Image formation, resolution, and height measurement in scanning ion conductance microscopy
,”
J. Appl. Phys.
105
,
094905
(
2009
).
32.
Y.
Korchev
,
M.
Milovanovic
,
C.
Bashford
,
D.
Bennett
,
E.
Sviderskaya
,
I.
Vodyanoy
, and
M.
Lab
, “
Specialized scanning ion-conductance microscope for imaging of living cells
,”
J. Microsc.
188
,
17
(
1997
).
33.
P.
Novak
,
C.
Li
,
A. I.
Shevchuk
,
R.
Stepanyan
,
M.
Caldwell
,
S.
Hughes
,
T. G.
Smart
,
J.
Gorelik
,
V. P.
Ostanin
,
M. J.
Lab
,
G. W. J.
Moss
,
G. I.
Frolenkov
,
D.
Klenerman
, and
Y. E.
Korchev
, “
Nanoscale live-cell imaging using hopping probe ion conductance microscopy
,”
Nat. Methods
6
,
279
(
2009
).
34.
P.
Novak
,
A.
Shevchuk
,
P.
Ruenraroengsak
,
M.
Miragoli
,
A. J.
Thorley
,
D.
Klenerman
,
M. J.
Lab
,
T. D.
Tetley
,
J.
Gorelik
, and
Y. E.
Korchev
, “
Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy
,”
Nano Lett.
14
,
1202
(
2014
).
35.
A. I.
Shevchuk
,
P.
Novak
,
M.
Taylor
,
I. A.
Diakonov
,
A.
Ziyadeh-Isleem
,
M.
Bitoun
,
P.
Guicheney
,
J.
Gorelik
,
C. J.
Merrifield
,
D.
Klenerman
, and
Y. E.
Korchev
, “
An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy
,”
J. Cell Biol.
197
,
499
(
2012
).
36.
G.-E.
Jung
,
H.
Noh
,
Y. K.
Shin
,
S.-J.
Kahng
,
K. Y.
Baik
,
H.-B.
Kim
,
N.-J.
Cho
, and
S.-J.
Cho
, “
Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications
,”
Nanoscale
7
,
10989
(
2015
).
37.
J.
Kim
,
S.-O.
Kim
, and
N.-J.
Cho
, “
Alternative configuration scheme for signal amplification with scanning ion conductance microscopy
,”
Rev. Sci. Instrum.
86
,
023706
(
2015
).
38.
P.
Li
,
L.
Liu
,
Y.
Yang
,
Y.
Wang
, and
G.
Li
, “
In-phase bias modulation mode of scanning ion conductance microscopy with capacitance compensation
,”
IEEE Trans. Ind. Electron.
62
,
6508
(
2015
).
39.
H.
Ida
,
Y.
Takahashi
,
A.
Kumatani
,
H.
Shiku
, and
T.
Matsue
, “
High speed scanning ion conductance microscopy for quantitative analysis of nanoscale dynamics of microvilli
,”
Anal. Chem.
89
,
6015
(
2017
).
40.
S.
Simeonov
and
T. E.
Schäffer
, “
High-speed scanning ion conductance microscopy for sub-second topography imaging of live cells
,”
Nanoscale
11
,
8579
(
2019
).
41.
S.
Watanabe
and
T.
Ando
, “
High-speed XYZ-nanopositioner for scanning ion conductance microscopy
,”
Appl. Phys. Lett.
111
,
113106
(
2017
).
42.
J. K.
Rosenstein
,
M.
Wanunu
,
C. A.
Merchant
,
M.
Drndic
, and
K. L.
Shepard
, “
Integrated nanopore sensing platform with sub-microsecond temporal resolution
,”
Nat. Methods
9
,
487
(
2012
).
43.
R. A.
Levis
and
J. L.
Rae
, “
The use of quartz patch pipettes for low noise single channel recording
,”
Biophys. J.
65
,
1666
(
1993
).
44.
J. K.
Rosenstein
,
S.
Ramakrishnan
,
J.
Roseman
, and
K. L.
Shepard
, “
Single ion channel recordings with CMOS-anchored lipid membranes
,”
Nano Lett.
13
,
2682
(
2013
).
45.
N.
Kodera
,
H.
Yamashita
, and
T.
Ando
, “
Active damping of the scanner for high-speed atomic force microscopy
,”
Rev. Sci. Instrum.
76
,
053708
(
2005
).
46.
M.
Kageshima
,
S.
Togo
,
Y. J.
Li
,
Y.
Naitoh
, and
Y.
Sugawara
, “
Wideband and hysteresis-free regulation of piezoelectric actuator based on induced current for high-speed scanning probe microscopy
,”
Rev. Sci. Instrum.
77
,
103701
(
2006
).
47.
R. W.
Clarke
,
A.
Zhukov
,
O.
Richards
,
N.
Johnson
,
V.
Ostanin
, and
D.
Klenerman
, “
Pipette–surface interaction: Current enhancement and intrinsic force
,”
J. Am. Chem. Soc.
135
,
322
(
2012
).
48.
M. A.
Edwards
,
C. G.
Williams
,
A. L.
Whitworth
, and
P. R.
Unwin
, “
Scanning ion conductance microscopy: A model for experimentally realistic conditions and image interpretation
,”
Anal. Chem.
81
,
4482
(
2009
).
49.
C.
Wei
,
A. J.
Bard
, and
S. W.
Feldberg
, “
Current rectification at quartz nanopipet electrodes
,”
Anal. Chem.
69
,
4627
(
1997
).
50.
L.
Cao
,
W.
Guo
,
Y.
Wang
, and
L.
Jiang
, “
Concentration-gradient-dependent ion current rectification in charged conical nanopores
,”
Langmuir
28
,
2194
(
2011
).
51.
X. L.
Deng
,
T.
Takami
,
J. W.
Son
,
E. J.
Kang
,
T.
Kawai
, and
B. H.
Park
, “
Effect of concentration gradient on ionic current rectification in polyethyleneimine modified glass nano-pipettes
,”
Sci. Rep.
4
,
4005
(
2014
).
52.
L.-H.
Yeh
,
C.
Hughes
,
Z.
Zeng
, and
S.
Qian
, “
Tuning ion transport and selectivity by a salt gradient in a charged nanopore
,”
Anal. Chem.
86
,
2681
(
2014
).
53.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
, “
Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
,”
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
54.
D.
Perry
,
D.
Momotenko
,
R. A.
Lazenby
,
M.
Kang
, and
P. R.
Unwin
, “
Characterization of nanopipettes
,”
Anal. Chem.
88
,
5523
(
2016
).
55.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
(
Courier Corporation
,
2002
).
56.
D. E.
Goldman
, “
Potential, impedance, and rectification in membranes
,”
J. Gen. Physiol.
27
,
37
(
1943
).
57.
A. L.
Hodgkin
and
B.
Katz
, “
The effect of sodium ions on the electrical activity of the giant axon of the squid
,”
J. Physiol.
108
,
37
(
1949
).
58.
J.
Gorelik
,
A. I.
Shevchuk
,
G. I.
Frolenkov
,
I. A.
Diakonov
,
C. J.
Kros
,
G. P.
Richardson
,
I.
Vodyanoy
,
C. R.
Edwards
,
D.
Klenerman
, and
Y. E.
Korchev
, “
Dynamic assembly of surface structures in living cells
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
5819
(
2003
).
59.
J.
Rheinlaender
and
T. E.
Schäffer
, “
Lateral resolution and image formation in scanning ion conductance microscopy
,”
Anal. Chem.
87
,
7117
(
2015
).
60.
L.
Dorwling-Carter
,
M.
Aramesh
,
C.
Forró
,
R. F.
Tiefenauer
,
I.
Shorubalko
,
J.
Vörös
, and
T.
Zambelli
, “
Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: Effect of the aperture edge on the ion current images
,”
J. Appl. Phys.
124
,
174902
(
2018
).
61.
Z.
Leonenko
,
E.
Finot
,
H.
Ma
,
T.
Dahms
, and
D.
Cramb
, “
Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy
,”
Biophys. J.
86
,
3783
(
2004
).
62.
T.
Sakamoto
,
I.
Amitani
,
E.
Yokota
, and
T.
Ando
, “
Direct observation of processive movement by individual myosin v molecules
,”
Biochem. Biophys. Res. Commun.
272
,
586
(
2000
).
63.
D.
Yamamoto
,
T.
Uchihashi
,
N.
Kodera
,
H.
Yamashita
,
S.
Nishikori
,
T.
Ogura
,
M.
Shibata
, and
T.
Ando
, “
High-speed atomic force microscopy techniques for observing dynamic biomolecular processes
,” in
Methods in Enzymology
(
Elsevier
,
2010
), Vol. 475, pp.
541
564
.
64.
N.
Kodera
,
D.
Yamamoto
,
R.
Ishikawa
, and
T.
Ando
, “
Video imaging of walking myosin V by high-speed atomic force microscopy
,”
Nature
468
,
72
(
2010
).

Supplementary Material

You do not currently have access to this content.