Quartz crystal microbalance with dissipation monitoring (QCMD) is a simple and versatile sensing technique with applications in a wide variety of academic and industrial fields, most notably electrochemistry, biophysics, quality control, and environmental monitoring. QCMD is limited by a relatively poor time resolution, which is of the order of seconds with conventional instrument designs at the noise level usually required. In this work, we present a design of an ultrafast QCMD with submillisecond time resolution. It is based on a frequency comb approach applied to a high-fundamental-frequency (HFF) resonator through a multifrequency lock-in amplifier. The combination allows us to reach data acquisition rates >10 kHz. We illustrate the method using a toy model of a glass sphere dropped on the resonator surfaces, bare or coated with liposomes, in liquid. We discuss some interesting features of the results obtained with the dropped spheres, such as bending of the HFF resonators due to the impact, sphere bouncing (or the absence of it), and contact aging.

1.
R.
Lucklum
and
P.
Hauptmann
, “
Acoustic microsensors-the challenge behind microgravimetry
,”
Anal. Bioanal. Chem.
384
(
3
),
667
682
(
2006
).
2.
R. E.
Speight
and
M. A.
Cooper
, “
A survey of the 2010 quartz crystal microbalance literature
,”
J. Mol. Recognit.
25
(
9
),
451
473
(
2012
).
3.
E.
Gileadi
,
Physical Electrochemistry: Fundamentals, Techniques and Applications
(
Wiley VCH
,
2011
).
4.
G. L.
Dybwad
, “
A sensitive new method for the determination of adhesive bonding between a particle and a substrate
,”
J. Appl. Phys.
58
(
7
),
2789
2790
(
1985
).
5.
C.
Steinem
and
A.
Janshoff
,
Piezoeletric Sensors
(
Springer
,
Heidelberg
,
2007
).
6.
R.
Beck
,
U.
Pittermann
, and
K. G.
Weil
, “
Impedance analysis of quartz oscillators, contacted on one side with a liquid
,”
Ber. Bunsen-Ges.
92
(
11
),
1363
1368
(
1988
).
7.
M.
Rodahl
,
F.
Hook
,
A.
Krozer
,
P.
Brzezinski
, and
B.
Kasemo
, “
Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments
,”
Rev. Sci. Instrum.
66
(
7
),
3924
3930
(
1995
).
8.

Q-Sense reports maximum data acquisition rate of 100 Hz, or a time resolution of 10 ms, but to achieve a resolution of 0.5 ng/cm2 with a 5 MHz sensor, the signal needs to be averaged over a 5 s interval. A routine data acquisition rate of ∼10 Hz, with a resolution of 1.8 ng/cm2 for a 5 MHz senor, is more common. https://www.biolinscientific.com/qsense/instruments/technical-specifications, downloaded on June 19, 2019.

9.
C.
Gabrielli
,
M.
Keddam
,
F.
Minouflet
, and
H.
Perrot
, “
Ac electrogravimetry contribution to the investigation of the anodic behaviour of iron in sulfuric medium
,”
Electrochim. Acta
41
(
7-8
),
1217
1222
(
1996
).
10.
J.
Petri
,
S.
Hochstädt
,
T.
Nentwig
,
A.
Pausch
,
A.
Langhoff
, and
D.
Johannsmann
, “
A fast electrochemical quartz crystal microbalance, which acquires frequency and bandwidth on multiple overtones
,”
Electroanalysis
29
(
3
),
806
813
(
2017
).
11.
C.
Hutter
,
D.
Platz
,
E. A.
Tholen
,
T. H.
Hansson
, and
D. B.
Haviland
, “
Reconstructing nonlinearities with intermodulation spectroscopy
,”
Phys. Rev. Lett.
104
(
5
),
050801
(
2010
).
12.
G. K.
Guttweln
,
A. D.
Ballato
, and
T. J.
Lukaszek
, “
VHF-UHF piezoelectric resonators
,” U.S. patent 3694677 (
26 September 1972
).
13.
J. R.
Hunt
and
R. C.
Smythe
, “
Chemically milled VHF and UHF AT-cut resonators
,” in
39th Annual Symposium on Frequency Control
(
IEEE
,
1985
), pp.
292
300
.
14.
K.
Hirama
,
Y.
Aoyama
, and
M.
Naito
, “
AT-cut quartz resonators with inverted-mesa electrodes
,”
Jpn. J. Appl. Phys., Part 1
36
(
10
),
6432
6436
(
1997
).
15.
O.
Ishii
,
T.
Morita
,
T.
Saito
, and
Y.
Nakazawa
, “
High frequency fundamental resonators and filters fabricated by batch process using chemical etching
,” in
Proceedings of the 1995 IEEE International Frequency Control Symposium
(
IEEE
,
1990
), pp.
372
377
.
16.
R.
Fernández
,
P.
García
,
M.
García
,
J. V.
García
,
Y.
Jiménez
, and
A.
Arnau
, “
Design and validation of a 150 MHz HFFQCM sensor for bio-sensing applications
,”
Sensors
17
,
2057
(
2017
).
17.
B.
Zimmermann
,
R.
Lucklum
,
P.
Hauptmann
,
J.
Rabe
, and
S.
Buttgenbach
, “
Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis
,”
Sens. Actuators, B
76
(
1-3
),
47
57
(
2001
).
18.
C.
March
,
J. V.
Garcia
,
A.
Sanchez
,
A.
Arnau
,
Y.
Jimenez
,
P.
Garcia
,
J. J.
Manclus
, and
A.
Montoya
, “
High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors
,”
Biosens. Bioelectron.
65
,
1
8
(
2015
).
19.
G.
Sauerbrey
, “
Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung
,”
Z. Phys.
155
(
2
),
206
222
(
1959
).
20.
K. K.
Kanazawa
and
J. G.
Gordon
, “
The oscillation frequency of a quartz resonator in contact with a liquid
,”
Anal. Chim. Acta
175
,
99
105
(
1985
).
21.
See https://www.keysight.com/upload/cmc_upload/All/NetworkAnalysisBacktoBasics.pdf for the description of network analyzer wiring configurations.
22.
A.
Peschel
,
A.
Langhoff
,
E.
Uhl
,
A.
Dathathreyan
,
S.
Haindl
,
D.
Johannsmann
, and
I.
Reviakine
, “
Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening
,”
J. Chem. Phys.
145
,
204904
(
2016
).
23.
H.
Ron
,
S.
Matlis
, and
I.
Rubinstein
, “
Self-assembled monolayers on oxidized metals. 2. Gold surface oxidative pretreatment, monolayer properties, and depression formation
,”
Langmuir
14
(
5
),
1116
1121
(
1998
).
24.
R. C.
Macdonald
,
R. I.
Macdonald
,
B. P. M.
Menco
,
K.
Takeshita
,
N. K.
Subbarao
, and
L. R.
Hu
, “
Small-volume extrusion apparatus for preparation of large, unilamellar vesicles
,”
Biochim. Biophys. Acta
1061
(
2
),
297
(
1991
).
25.
I.
Reviakine
and
A.
Brisson
, “
Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy
,”
Langmuir
16
(
4
),
1806
1815
(
2000
).
26.
P.
Gondret
,
M.
Lance
, and
L.
Petit
, “
Bouncing motion of spherical particles in fluids
,”
Phys. Fluids
14
(
2
),
643
652
(
2002
).
27.
R. H.
Davis
,
J. M.
Serayssol
, and
E. J.
Hinch
, “
The elastohydrodynamic collision of 2 spheres
,”
J. Fluid Mech.
163
,
479
497
(
1986
).
28.
B. P.
Borovsky
,
C.
Bouxsein
,
C.
O’Neill
, and
L. R.
Sletten
, “
An integrated force probe and quartz crystal microbalance for high-speed microtribology
,”
Tribol. Lett.
65
,
148
(
2017
).
29.
A.
Peschel
,
A.
Langhoff
, and
D.
Johannsmann
, “
Coupled resonances allow studying the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles
,”
Nanotechnology
26
(
48
),
484001-1
484001-9
(
2015
).
30.
V. L.
Popov
,
Contact Mechanics and Friction: Physical Principles and Applications
(
Springer
,
2010
).
31.
K. E.
Heusler
,
A.
Grzegorzewski
,
L.
Jackel
, and
J.
Pietrucha
, “
Measurement of mass and surface stress at one electrode of a quartz oscillator
,”
Ber. Bunsen-Ges.
92
(
11
),
1218
1225
(
1988
).
32.
Z. H.
Li
,
L.
Pastewka
, and
I.
Szlufarska
, “
Chemical aging of large-scale randomly rough frictional contacts
,”
Phys. Rev. E
98
(
2
),
023001
(
2018
).
33.
E.
Melan
, “
Zur plastizität des räumlichen kontinuums
,”
Ing.-Arch.
9
,
116
(
1938
).
34.
A.
Klarbring
,
M.
Ciavarella
, and
J. R.
Barber
, “
Shakedown in elastic contact problems with Coulomb friction
,”
Int. J. Solids Struct.
44
(
25-26
),
8355
8365
(
2007
).
35.
S.
Hanke
,
J.
Petri
, and
D.
Johannsmann
, “
Partial slip in mesoscale contacts: Dependence on contact size
,”
Phys. Rev. E
88
(
3
),
032408
(
2013
).
36.
M. U.
Hammer
,
T. H.
Anderson
,
A.
Chaimovich
,
M. S.
Shell
, and
J.
Israelachvili
, “
The search for the hydrophobic force law
,”
Faraday Discuss.
146
,
299
308
(
2010
).

Supplementary Material

You do not currently have access to this content.