Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be adapted to enhance resolution and reduce noise for a neutron spectroscopy (an instrument for mapping excitations in reciprocal space). The procedure to reconstruct super-resolution energy spectra of phonon density of states relies on a realization of multiframe registration, accurate determination of the energy-dependent point spread function, asymmetric nature of instrument resolution broadening, and iterative reconstructions. Applying these methods to phonon density of states data for a graphite sample demonstrates contrast enhancement, noise reduction, and ∼5-fold improvement over nominal energy resolution. The data were collected at three different incident energies measured at the wide angular-range chopper spectrometer at the Spallation Neutron Source.

1.
J. D.
Budai
,
J.
Hong
,
M. E.
Manley
,
E. D.
Specht
,
C. W.
Li
,
J. Z.
Tischler
,
D. L.
Abernathy
,
A. H.
Said
,
B. M.
Leu
,
L. A.
Boatner
 et al., “
Metallization of vanadium dioxide driven by large phonon entropy
,”
Nature
515
,
535
(
2014
).
2.
C. W.
Li
,
J.
Hong
,
A. F.
May
,
D.
Bansal
,
S.
Chi
,
T.
Hong
,
G.
Ehlers
, and
O.
Delaire
, “
Orbitally driven giant phonon anharmonicity in SnSe
,”
Nat. Phys.
11
,
1063
(
2015
).
3.
D.
Bansal
,
J. L.
Niedziela
,
R.
Sinclair
,
V. O.
Garlea
,
D. L.
Abernathy
,
S.
Chi
,
Y.
Ren
,
H.
Zhou
, and
O.
Delaire
, “
Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite
,”
Nat. Commun.
9
,
15
(
2018
).
4.
M.
Manley
,
P.
Stonaha
,
D.
Abernathy
,
S.
Chi
,
R.
Sahul
,
R.
Hermann
, and
J.
Budai
, “
Supersonic propagation of lattice energy by phasons in fresnoite
,”
Nat. Commun.
9
,
1823
(
2018
).
5.
H. F.
Fong
,
B.
Keimer
,
P. W.
Anderson
,
D.
Reznik
,
F.
Doğan
, and
I. A.
Aksay
, “
Phonon and magnetic neutron scattering at 41 mev in YBa2Cu3O7
,”
Phys. Rev. Lett.
75
,
316
(
1995
).
6.
R.
Osborn
,
E. A.
Goremychkin
,
A. I.
Kolesnikov
, and
D. G.
Hinks
, “
Phonon density of states in MgB2
,”
Phys. Rev. Lett.
87
,
017005
(
2001
).
7.
F.
Weber
,
S.
Rosenkranz
,
L.
Pintschovius
,
J.-P.
Castellan
,
R.
Osborn
,
W.
Reichardt
,
R.
Heid
,
K.-P.
Bohnen
,
E. A.
Goremychkin
,
A.
Kreyssig
,
K.
Hradil
, and
D. L.
Abernathy
, “
Electron-phonon coupling in the conventional superconductor YNi2B2C at high phonon energies studied by time-of-flight neutron spectroscopy
,”
Phys. Rev. Lett.
109
,
057001
(
2012
).
8.
K.
Ran
,
R.
Zhong
,
T.
Chen
,
Y.
Gan
,
J.
Wang
,
B. L.
Winn
,
A. D.
Christianson
,
S.
Li
,
Z.
Ma
,
S.
Bao
,
Z.
Cai
,
G.
Xu
,
J. M.
Tranquada
,
G.
Gu
,
J.
Sun
, and
J.
Wen
, “
Unusual phonon density of states and response to the superconducting transition in the in-doped topological crystalline insulator Pb0.5Sn0.5Te
,”
Phys. Rev. B
97
,
220502(R)
(
2018
).
9.
B.
Fultz
, “
Vibrational thermodynamics of materials
,”
Prog. Mater. Sci.
55
,
247
352
(
2010
).
10.
H. L.
Smith
,
C. W.
Li
,
A.
Hoff
,
G. R.
Garrett
,
D. S.
Kim
,
F. C.
Yang
,
M. S.
Lucas
,
T.
Swan-Wood
,
J.
Lin
,
M.
Stone
 et al., “
Separating the configurational and vibrational entropy contributions in metallic glasses
,”
Nat. Phys.
13
,
900
(
2017
).
11.
D. S.
Kim
,
H. L.
Smith
,
J. L.
Niedziela
,
C. W.
Li
,
D. L.
Abernathy
, and
B.
Fultz
, “
Phonon anharmonicity in silicon from 100 to 1500 K
,”
Phys. Rev. B
91
,
014307
(
2015
).
12.
T. L.
Swan-Wood
, “
Vibrational entropy contributions to the phase stability of iron-and aluminum-based binary alloys
,” Ph.D. thesis,
California Institute of Technology
,
2006
.
13.
P. D.
Bogdanoff
, “
The phonon entropy of metals and alloys: The effects of thermal and chemical disorder
,” Ph.D. thesis,
California Institute of Technology
,
2002
.
14.
M.
Kresch
,
O.
Delaire
,
R.
Stevens
,
J. Y. Y.
Lin
, and
B.
Fultz
, “
Neutron scattering measurements of phonons in nickel at elevated temperatures
,”
Phys. Rev. B
75
,
104301
(
2007
).
15.
O.
Delaire
,
M.
Kresch
,
J. A.
Muñoz
,
M. S.
Lucas
,
J. Y. Y.
Lin
, and
B.
Fultz
, “
Electron-phonon interactions and high-temperature thermodynamics of vanadium and its alloys
,”
Phys. Rev. B
77
,
214112
(
2008
).
16.
D. S.
Kim
,
O.
Hellman
,
J.
Herriman
,
H. L.
Smith
,
J. Y. Y.
Lin
,
N.
Shulumba
,
J. L.
Niedziela
,
C. W.
Li
,
D. L.
Abernathy
, and
B.
Fultz
, “
Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
1992
1997
(
2018
).
17.
S.
Klotz
and
M.
Braden
, “
Phonon dispersion of bcc iron to 10 GPa
,”
Phys. Rev. Lett.
85
,
3209
3212
(
2000
).
18.
I.-K.
Jeong
,
T. W.
Darling
,
M. J.
Graf
,
T.
Proffen
,
R. H.
Heffner
,
Y.
Lee
,
T.
Vogt
, and
J. D.
Jorgensen
, “
Role of the lattice in the γ → α phase transition of Ce: A high-pressure neutron and x-ray diffraction study
,”
Phys. Rev. Lett.
92
,
105702
(
2004
).
19.
C.-K.
Loong
,
S.
Ikeda
, and
J.
Carpenter
, “
The resolution function of a pulsed-source neutron chopper spectrometer
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
260
,
381
402
(
1987
).
20.
D. L.
Abernathy
,
M. B.
Stone
,
M.
Loguillo
,
M.
Lucas
,
O.
Delaire
,
X.
Tang
,
J.
Lin
, and
B.
Fultz
, “
Design and operation of the wide angular-range chopper spectrometer ARCS at the spallation neutron source
,”
Rev. Sci. Instrum.
83
,
015114
(
2012
).
21.
S.
Ikeda
and
J. M.
Carpenter
, “
Wide-energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
239
,
536
544
(
1985
).
22.
J.
Nipko
and
C.-K.
Loong
, “
Phonon excitations and related thermal properties of aluminum nitride
,”
Phys. Rev. B
57
,
10550
(
1998
).
23.
T. E.
Mason
,
D.
Abernathy
,
I.
Anderson
,
J.
Ankner
,
T.
Egami
,
G.
Ehlers
,
A.
Ekkebus
,
G.
Granroth
,
M.
Hagen
,
K.
Herwig
,
J.
Hodges
,
C.
Hoffmann
,
C.
Horak
,
L.
Horton
,
F.
Klose
,
J.
Larese
,
A.
Mesecar
,
D.
Myles
,
J.
Neuefeind
,
M.
Ohl
,
C.
Tulk
,
X.-L.
Wang
, and
J.
Zhao
, “
The spallation neutron source in Oak Ridge: A powerful tool for materials research
,”
Physica B
385
,
955
960
(
2006
).
24.
D.
Sivia
,
R.
Silver
, and
R.
Pynn
, “
Optimization of resolution functions for neutron scattering
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
287
,
538
550
(
1990
).
25.
J.
Weese
,
J.
Hendricks
,
R.
Zorn
,
J.
Honerkamp
, and
D.
Richter
, “
Deconvolution of neutron scattering data: A new computational approach
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
378
,
275
283
(
1996
).
26.
R.
Bewley
,
R.
Eccleston
,
K.
McEwen
,
S.
Hayden
,
M.
Dove
,
S.
Bennington
,
J.
Treadgold
, and
R.
Coleman
, “
MERLIN, a new high count rate spectrometer at ISIS
,”
Physica B
385-386
,
1029
1031
(
2006
).
27.
G. E.
Granroth
,
A. I.
Kolesnikov
,
T. E.
Sherline
,
J. P.
Clancy
,
K. A.
Ross
,
J. P. C.
Ruff
,
B. D.
Gaulin
, and
S. E.
Nagler
, “
SEQUOIA: A newly operating chopper spectrometer at the SNS
,”
J. Phys.: Conf. Ser.
251
,
012058
(
2010
).
28.
G.
Ehlers
,
A. A.
Podlesnyak
,
J. L.
Niedziela
,
E. B.
Iverson
, and
P. E.
Sokol
, “
The new cold neutron chopper spectrometer at the spallation neutron source: Design and performance
,”
Rev. Sci. Instrum.
82
,
085108
(
2011
).
29.
R.
Bewley
,
J.
Taylor
, and
S.
Bennington
, “
LET, a cold neutron multi-disk chopper spectrometer at ISIS
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
637
,
128
134
(
2011
).
30.
R.
Kajimoto
,
M.
Nakamura
,
Y.
Inamura
,
F.
Mizuno
,
K.
Nakajima
,
S.
Ohira-Kawamura
,
T.
Yokoo
,
T.
Nakatani
,
R.
Maruyama
,
K.
Soyama
,
K.
Shibata
,
K.
Suzuya
,
S.
Sato
,
K.
Aizawa
,
M.
Arai
,
S.
Wakimoto
,
M.
Ishikado
,
S.-i.
Shamoto
,
M.
Fujita
,
H.
Hiraka
,
K.
Ohoyama
,
K.
Yamada
, and
C.-H.
Lee
, “
The fermi chopper spectrometer 4SEASONS at J-PARC
,”
J. Phys. Soc. Jpn.
80
,
SB025
(
2011
).
31.
S.
Itoh
,
T.
Yokoo
,
S.
Satoh
,
S.-i.
Yano
,
D.
Kawana
,
J.
Suzuki
, and
T. J.
Sato
, “
High resolution chopper spectrometer (HRC) at J-PARC
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
631
,
90
97
(
2011
).
32.
Z.
Zalevsky
and
D.
Mendlovic
,
Optical Superresolution
(
Springer Science & Business Media
,
2004
), Vol. 91.
33.
D.
Capel
,
Image Mosaicing and Super-Resolution
(
Springer
,
2004
).
34.
M.
Cristani
,
D. S.
Cheng
,
V.
Murino
, and
D.
Pannullo
, “
Distilling information with super-resolution for video surveillance
,” in
Proceedings of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks
(
ACM
,
2004
), pp.
2
11
.
35.
F.
Li
,
X.
Jia
, and
D.
Fraser
, “
Universal HMT based super resolution for remote sensing images
,” in
15th IEEE International Conference on Image Processing
(
IEEE
,
2008
), pp.
333
336
.
36.
J. A.
Maintz
and
M. A.
Viergever
, “
A survey of medical image registration
,”
Med. Image Anal.
2
,
1
36
(
1998
).
37.
B.
Narayanan
,
R. C.
Hardie
,
K. E.
Barner
, and
M.
Shao
, “
A computationally efficient super-resolution algorithm for video processing using partition filters
,”
IEEE Trans. Circuits Syst. Video Technol.
17
,
621
634
(
2007
).
38.
S. C.
Park
,
M. K.
Park
, and
M. G.
Kang
, “
Super-resolution image reconstruction: A technical overview
,”
IEEE Signal Process. Mag.
20
,
21
36
(
2003
).
39.
M.
Irani
and
S.
Peleg
, “
Improving resolution by image registration
,”
CVGIP: Graphical Models Image Process.
53
,
231
239
(
1991
).
40.
J. Y. Y.
Lin
,
F.
Islam
,
G.
Sala
,
I.
Lumsden
,
H.
Smith
,
M.
Doucet
,
M. B.
Stone
,
D. L.
Abernathy
,
G.
Ehlers
,
J. F.
Ankner
, and
G. E.
Granroth
, “
Recent developments of MCViNE and its applications at SNS
,”
J. Phys. Commun.
3
(
8
),
085005
(
2019
).
41.
J. Y. Y.
Lin
,
H. L.
Smith
,
G. E.
Granroth
,
D. L.
Abernathy
,
M. D.
Lumsden
,
B.
Winn
,
A. A.
Aczel
,
M.
Aivazis
, and
B.
Fultz
, “
MCViNE—An object oriented Monte Carlo neutron ray tracing simulation package
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
810
,
86
99
(
2016
).
42.
S.
Diallo
,
J.
Lin
,
D.
Abernathy
, and
R.
Azuah
, “
Momentum and energy dependent resolution function of the ARCS neutron chopper spectrometer at high momentum transfer: Comparing simulation and experiment
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
835
,
34
41
(
2016
).
43.
J. Y.
Lin
,
A.
Banerjee
,
F.
Islam
,
M. D.
Le
, and
D. L.
Abernathy
, “
Energy dependence of the flux and elastic resolution for the ARCS neutron spectrometer
,”
Physica B
562
,
26
(
2019
).
44.
C.-K.
Loong
,
J.
Carpenter
, and
S.
Ikeda
,
A Parametric Formulation of the Resolution Function of Pulsed-Source Chopper Spectrometer
(
Argonne National Laboratory
,
1993
).
45.
W. H.
Richardson
, “
Bayesian-based iterative method of image restoration
,”
J. Opt. Soc. Am.
62
,
55
59
(
1972
).
46.
L. B.
Lucy
, “
An iterative technique for the rectification of observed distributions
,”
Astron. J.
79
,
745
(
1974
).
47.
W.
Yin
,
S.
Osher
,
D.
Goldfarb
, and
J.
Darbon
, “
Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing
,”
SIAM J. Imaging Sci.
1
,
143
168
(
2008
).
48.
J.-F.
Cai
,
S.
Osher
, and
Z.
Shen
, “
Linearized Bregman iterations for compressed sensing
,”
Math. Comput.
78
,
1515
1536
(
2009
).
49.
J.-F.
Cai
,
S.
Osher
, and
Z.
Shen
, “
Convergence of the linearized Bregman iteration for ℓ1-norm minimization
,”
Math. Comput.
78
,
2127
2136
(
2009
).
50.
T.
Goldstein
,
X.
Bresson
, and
S.
Osher
, “
Geometric applications of the split Bregman method: Segmentation and surface reconstruction
,”
J. Sci. Comput.
45
,
272
293
(
2010
).
51.
T.
Goldstein
and
S.
Osher
, “
The split Bregman method for L1-regularized problems
,”
SIAM J. Imaging Sci.
2
,
323
343
(
2009
).
52.

In DGS spectra, single peak widths have an important meaning as a measure of lifetimes of excitations.

53.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
54.

Sample defects may also cause differences.

55.

A series of Gaussian resolution functions with different widths were convolved with the DFT DOS curve and compared to the reconstructed DOS. The width of the Gaussian function with the best match is regarded the effective resolution.

56.
A. A.
Campbell
,
Y.
Katoh
,
M. A.
Snead
, and
K.
Takizawa
, “
Property changes of G347A graphite due to neutron irradiation
,”
Carbon
109
,
860
873
(
2016
).
57.
I.
Al-Qasir
(unpublished).
58.
M.
Könnecke
,
F. A.
Akeroyd
,
H. J.
Bernstein
,
A. S.
Brewster
,
S. I.
Campbell
,
B.
Clausen
,
S.
Cottrell
,
J. U.
Hoffmann
,
P. R.
Jemian
,
D.
Männicke
 et al., “
The nexus data format
,”
J. Appl. Crystallogr.
48
,
301
305
(
2015
).
59.
O.
Arnold
,
J.-C.
Bilheux
,
J.
Borreguero
,
A.
Buts
,
S. I.
Campbell
,
L.
Chapon
,
M.
Doucet
,
N.
Draper
,
R. F.
Leal
,
M.
Gigg
 et al., “
Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
764
,
156
166
(
2014
).
60.
J. Y. Y.
Lin
,
F.
Islam
, and
M.
Kresh
, “
Multiphonon: Phonon density of states tools for inelastic neutron scattering powder data
,”
J. Open Source Software
3
,
440
(
2018
).
61.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
62.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
63.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
64.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
65.
J. Y. Y.
Lin
(
2017
). “
MCViNE/dgsres: Release 0.1.0 alpha 1
,” Zenodo. .
66.
C. G.
Windsor
,
Pulsed Neutron Scattering
(
Taylor & Francis
,
1981
).
67.
R. L.
White
, “
Image restoration using the damped Richardson-Lucy method
,” in
Instrumentation in Astronomy VIII
(
International Society for Optics and Photonics
,
1994
), Vol. 2198, pp.
1342
1349
.
68.
F.
Tsumuraya
,
N.
Miura
, and
N.
Baba
, “
Iterative blind deconvolution method using Lucy’s algorithm
,”
Astron. Astrophys.
282
,
699
708
(
1994
).
69.
J.-L.
Starck
,
E.
Pantin
, and
F.
Murtagh
, “
Deconvolution in astronomy: A review
,”
Publ. Astron. Soc. Pac.
114
,
1051
(
2002
).
70.
W.
Yilun
,
Y.
Jungeng
,
Y.
Wotao
, and
Z.
Yin
, “
A new alternating minimization algorithm for total variation image reconstruction
,”
SIAM J. Imaging Sci.
1
,
248
272
(
2008
).
You do not currently have access to this content.