We present an X-ray device for use under conditions of weightlessness to produce high-speed radiograms and tomograms. The device is equipped with two detectors of different resolutions, a high temporal resolution-small area detector (4 Mpix within 13 × 13 mm2) and a low temporal resolution-large area detector (3 Mpix within 145 × 115 mm2). Using the high temporal resolution detector, the device achieves a recording rate of up to 25 655 radiograms per second, while using a low temporal resolution detector, up to 86 radiograms can be recorded per second. For the first time, we could record complete X-ray tomograms in microgravity aboard a parabolic flight in 16 s using a laboratory microfocus X-ray source. We demonstrate the operation of the device by analyzing the three-dimensional packing of particles (tomograms) and structure formation in a granular gas under periodic excitation (radiograms).

1.
P.
Bouguer
,
Essai D’Optique sur la Gradation de la Lumière
(
Claude Jombert
,
Paris
,
1729
).
2.
J. H.
Lambert
,
Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae
(
Klett
,
Augsburg
,
1760
).
3.
A.
Beer
, “
Bestimmung der absorption des rothen lichts in farbigen flüssigkeiten
,”
Ann. Phys.
162
,
78
88
(
1852
).
4.
J.
Als-Nielsen
and
D.
McMorrow
,
Elements of Modern X-Ray Physics
, 2nd ed. (
Wiley
,
2011
).
5.
J. D.
Ingle
 Jr.
and
S.
Crouch
,
Spectrochemical Analysis
(
Prentice-Hall
,
USA
,
1988
).
6.
J.
Radon
, “
Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten
,”
Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl.
69
,
262
277
(
1917
) [“
On the determination of functions from their integral values along certain manifolds
,“
IEEE Trans. Med. Imaging
5,
170
176
(
1986
)].
7.
S. R.
Deans
,
The Radon Transform and Some of its Applications
(
John Wiley & Sons
,
1983
).
8.
S.
Weis
and
M.
Schröter
, “
Analyzing x-ray tomographies of granular packings
,”
Rev. Sci. Instrum.
88
,
051809
(
2017
).
9.
Y.
Houltz
,
P.
Holm
,
P.
Andersson
,
O.
Löfgen
,
K.
Löth
, and
G.
Florin
, “
X-ray diagnostics for use in microgravity experiments
,” in
19th European Rocket and Balloon Programmes and Related Research, 2009, Bad Reichenhall, Germany
(
European Space Agency–Publications–ESA SP, ESA Communication Production Office
,
Noordwijk
,
2009
), Vol. 671, pp.
399
402
.
10.
F.
Kargl
,
M.
Balter
,
C.
Stenzel
,
T.
Gruhl
,
N.
Daneke
, and
A.
Meyer
, “
Versatile compact X-ray radiography module for materials science under microgravity conditions
,”
J. Phys.: Conf. Ser.
327
,
012011
(
2011
).
11.
S.
Klein
,
D.
Bräuer
,
M.
Becker
,
A.
Knipstein
,
S.
Meckel
,
E.
Sondermann
, and
F.
Kargl
, “
X-RISE–A multifunctional x-ray radiography device for parabolic flights and laboratory use
,”
Int. J. Microgravity Sci. Appl.
33
,
330405
(
2016
).
12.
T.
Azami
,
S.
Nakamura
, and
T.
Hibiya
, “
Effect of oxygen on thermocapillary convection in a molten silicon column under microgravity
,”
J. Electrochem. Soc.
148
,
G185
G189
(
2001
).
13.
T.
Wübben
,
H.
Stanzick
,
J.
Banhart
, and
S.
Odenbach
, “
Stability of metallic foams studied under microgravity
,”
J. Phys.: Condens. Matter
15
,
S427
S433
(
2002
).
14.
F.
García-Moreno
,
C.
Jimenez
,
M.
Mukherjee
, and
J.
Banhart
, “
Metallic foam experiment on MASER 11
,” in
19th European Rocket and Balloon Programmes and Related Research, 2009, Bad Reichenhall, Germany
(
European Space Agency-Publications–ESA SP, ESA Communication Production Office
,
Noordwijk
,
2009
), Vol. 671.
15.
F.
García-Moreno
,
M.
Mukherjee
,
C.
Jimenez
, and
J.
Banhart
, “
X-ray radioscopy of liquid metal foams under microgravity
,”
Trans. Indian Inst. Met.
62
,
451
454
(
2009
).
16.
F.
García-Moreno
,
C.
Jiménez
,
M.
Mukherjee
,
P.
Holm
,
J.
Weise
, and
J.
Banhart
, “
Experiments on metallic foams under gravity and microgravity
,”
Colloids Surf., A
344
,
101
106
(
2009
), current research on foams.
17.
F.
García-Moreno
,
S. T.
Tobin
,
M.
Mukherjee
,
C.
Jiménez
,
E.
Solórzano
,
G. S.
Vinod Kumar
,
S.
Hutzler
, and
J.
Banhart
, “
Analysis of liquid metal foams through x-ray radioscopy and microgravity experiments
,”
Soft Matter
10
,
6955
6962
(
2014
).
18.
G.
Salloum-Abou-Jaoude
,
H.
Nguyen-Thi
,
G.
Reinhart
,
R. H.
Mathiesen
,
G.
Zimmermann
, and
D.
Voss
, “
Characterization of motion of dendrite fragment by x-ray radiography on earth and under microgravity environment
,” in
Solidification and Gravity VI
, Materials Science Forum Vol. 790, edited by
A.
Roósz
and
K.
Tomolya
(
Trans Tech Publications
,
2014
), pp.
311
316
.
19.
H.
Nguyen-Thi
,
A.
Bogno
,
G.
Reinhart
,
B.
Billia
,
R. H.
Mathiesen
,
G.
Zimmermann
,
Y.
Houltz
,
K.
Löth
,
D.
Voss
,
A.
Verga
, and
F.
de Pascale
, “
XRMON-GF experimental set-up devoted to x-ray radiographic observation of directional solidification under microgravity on MASER12 sounding rocket mission
,” in
Proceedings of 20th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Hyère, France, 22–26 May 2011
,
2011
.
20.
H.
Nguyen-Thi
,
G.
Reinhart
,
G. S. A.
Jaoude
,
R.
Mathiesen
,
G.
Zimmermann
,
Y.
Houltz
,
D.
Voss
,
A.
Verga
,
D.
Browne
, and
A.
Murphy
, “
XRMON-GF: A novel facility for solidification of metallic alloys with in situ and time-resolved x-ray radiographic characterization in microgravity conditions
,”
J. Cryst. Growth
374
,
23
30
(
2013
).
21.
H.
Nguyen-Thi
,
G.
Reinhart
,
G.
Salloum-Abou-Jaoude
,
D. J.
Browne
,
A. G.
Murphy
,
Y.
Houltz
,
J.
Li
,
D.
Voss
,
A.
Verga
,
R. H.
Mathiesen
, and
G.
Zimmermann
, “
XRMON-GF experiments devoted to the in situ x-ray radiographic observation of growth process in microgravity conditions
,”
Microgravity Sci. Technol.
26
,
37
50
(
2014
).
22.
A.
Murphy
,
G.
Reinhart
,
H.
Nguyen-Thi
,
G. S. A.
Jaoude
, and
D.
Browne
, “
Meso-scale modelling of directional solidification and comparison with in situ x-ray radiographic observations made during the MASER-12 XRMON microgravity experiment
,”
J. Alloys Compd.
573
,
170
176
(
2013
).
23.
A. G.
Murphy
,
J.
Li
,
O.
Janson
,
A.
Verga
, and
D. J.
Browne
, “
Microgravity and hypergravity observations of equiaxed solidification of Al-Cu alloys using in situ x-radiography recorded in real-time on board a parabolic flight
,”
Mater. Sci. Forum
790-791
,
52
58
(
2014
).
24.
A.
Murphy
,
R.
Mathiesen
,
Y.
Houltz
,
J.
Li
,
C.
Lockowandt
,
K.
Henriksson
,
N.
Melville
, and
D.
Browne
, “
Direct observation of spatially isothermal equiaxed solidification of an Al–Cu alloy in microgravity on board the MASER 13 sounding rocket
,”
J. Cryst. Growth
454
,
96
104
(
2016
).
25.
D.
Browne
,
F.
García-Moreno
,
H.
Nguyen-Thi
,
G.
Zimmermann
,
F.
Kargl
,
R. H.
Mathiesen
,
A.
Griesche
, and
O.
Minster
, “
Overview of in situ x-ray studies of light alloy solidification in microgravity
,” in
Magnesium Technology 2017
, edited by
K. N.
Solanki
,
D.
Orlov
,
A.
Singh
, and
N. R.
Neelameggham
(
Springer
,
Berlin
,
2017
), pp.
581
590
.
26.
P.
Yu
,
S.
Frank-Richter
,
A.
Börngen
, and
M.
Sperl
, “
Monitoring three-dimensional packings in microgravity
,”
Granular Matter
16
,
165
173
(
2014
).
27.
Hamamatsu
, Microfocus X-ray source L9181-02.
28.
Dexela
, 1207NDT, 1512NDT and 2923NDT.
29.
Hamamatsu
, X-ray scmos camera c12849 series.
30.

Pc recommendation.

31.
Hamamatsu
, X-ray sCMOS Camera C12849-101U/-102U Instruction Manual, Version 1.3 ed.
32.
J. O.
Cutress
and
R. F.
Pulfer
, “
X-ray investigations of flowing powders
,”
Powder Technol.
1
,
213
220
(
1967
).
33.
R. L.
Michalowski
, “
Flow of granular material through a plane hopper
,”
Powder Technol.
39
,
29
40
(
1984
).
34.
G. W.
Baxter
,
R. P.
Behringer
,
T.
Fagert
, and
G. A.
Johnson
, “
Pattern formation in flowing sand
,”
Phys. Rev. Lett.
62
,
2825
2828
(
1989
).
35.
T.
Homan
,
R.
Mudde
,
D.
Lohse
, and
D.
van der Meer
, “
High-speed X-ray imaging of a ball impacting on loose sand
,”
J. Fluid Mech.
777
,
690
706
(
2015
).
36.
I.
Vlahinić
,
R.
Kawamoto
,
E.
Andò
,
G.
Viggiani
, and
J. E.
Andrade
, “
From computed tomography to mechanics of granular materials via level set bridge
,”
Acta Geotech.
12
,
85
95
(
2017
).
37.
P. N.
Rowe
and
D. J.
Everett
, “
Fluidized bed bubbles viewed by X-rays
,”
Trans. Inst. Chem. Eng.
50
,
42
48
(
1972
).
38.
J. G.
Yates
,
D. J.
Cheesman
,
D.
Lettieri
, and
P.
Newton
, “
X-ray analysis of fluidized beds and other multiphase systems
,”
Kona
20
,
133
143
(
2002
).
39.
R. F.
Mudde
, “
Double x-ray tomography of a bubbling fluidized bed
,”
Ind. Eng. Chem. Res.
49
,
5061
5065
(
2010
).
40.
R. F.
Mudde
, “
Time-resolved X-ray tomography of a fluidized bed
,”
Powder Technol.
199
,
55
59
(
2010
), special issue: Recent advances in fluid-particle systems.
41.
J. R.
Royer
,
E. I.
Corwin
,
A.
Flior
,
M.-L.
Cordero
,
M. L.
Rivers
,
P. J.
Eng
, and
H. M.
Jaeger
, “
Formation of granular jets observed by high-speed x-ray radiography
,”
Nat. Phys.
1
,
164
167
(
2005
).
42.
J. R.
Royer
,
B.
Conyers
,
E. I.
Corwin
,
P. J.
Eng
, and
H. M.
Jaeger
, “
The role of interstitial gas in determining the impact response of granular beds
,”
Europhys. Lett.
93
,
28008
(
2011
).
43.
A. G.
Athanassiadis
,
P. J.
La Rivière
,
E.
Sidky
,
C.
Pelizzari
,
X.
Pan
, and
H. M.
Jaeger
, “
X-ray tomography system to investigate granular materials during mechanical loading
,”
Rev. Sci. Instrum.
85
,
083708
(
2014
).
44.
A.
Kabla
,
G.
Debrégeas
,
J.-M.
di Meglio
, and
T. J.
Senden
, “
X-ray observation of micro-failures in granular piles approaching an avalanche
,”
Europhys. Lett.
71
,
932
937
(
2005
).
45.
R. D.
Maladen
,
Y.
Ding
,
C.
Li
, and
D. I.
Goldman
, “
Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
,”
Science
325
,
314
318
(
2009
).
46.
T.
Aste
, “
Volume fluctuations and geometrical constraints in granular packs
,”
Phys. Rev. Lett.
96
,
018002
(
2006
).
47.
M.
Jerkins
,
M.
Schröter
,
H. L.
Swinney
,
T. J.
Senden
,
M.
Saadatfar
, and
T.
Aste
, “
Onset of mechanical stability in random packings of frictional spheres
,”
Phys. Rev. Lett.
101
,
018301
(
2008
).
48.
F. M.
Schaller
,
M.
Neudecker
,
M.
Saadatfar
,
G. W.
Delaney
,
G. E.
Schröder-Turk
, and
M.
Schröter
, “
Local origin of global contact numbers in frictional ellipsoid packings
,”
Phys. Rev. Lett.
114
,
158001
(
2015
).
49.
M.
Neudecker
,
S.
Ulrich
,
S.
Herminghaus
, and
M.
Schröter
, “
Jammed frictional tetrahedra are hyperstatic
,”
Phys. Rev. Lett.
111
,
028001
(
2013
).
50.
M.
Baur
,
N.
Uhlmann
,
T.
Pöschel
, and
M.
Schröter
, “
Correction of beam hardening in x-ray radiograms
,”
Rev. Sci. Instrum.
90
,
025108
(
2019
).
51.
M.
Baur
,
J.
Claussen
,
S.
Gerth
,
J. E.
Kollmer
,
T.
Shreve
,
N.
Uhlmann
, and
T.
Pöschel
, “
How to measure the volume fraction of granular assemblies using x-ray radiography
,”
Powder Technol.
356
,
439
442
(
2019
).
52.
A.
Amon
,
P.
Born
,
K. E.
Daniels
,
J. A.
Dijksman
,
K.
Huang
,
D.
Parker
,
M.
Schröter
,
R.
Stannarius
, and
A.
Wierschem
, “
Focus on imaging methods in granular physics
,”
Rev. Sci. Instrum.
88
,
051701
(
2017
).
53.
A.
Amon
,
P.
Born
,
K. E.
Daniels
,
J. A.
Dijksman
,
K.
Huang
,
D.
Parker
,
M.
Schröter
,
R.
Stannarius
, and
A.
Wierschem
, “
Publisher’s Note: “Preface: Focus on imaging methods in granular physics” [Rev. Sci. Instrum. 88, 051701 (2017)]
,”
Rev. Sci. Instrum.
88
,
079901
(
2017
).
54.
M. N.
Bannerman
,
J. E.
Kollmer
,
A.
Sack
,
M.
Heckel
,
P.
Müller
, and
T.
Pöschel
, “
Movers and shakers: Granular damping in microgravity
,”
Phys. Rev. E
84
,
011301
(
2011
).
55.
J. E.
Kollmer
,
A.
Sack
,
M.
Heckel
, and
T.
Pöschel
, “
Relaxation of a spring with an attached granular damper
,”
New J. Phys.
15
,
093023
(
2013
).
56.
A.
Sack
,
M.
Heckel
,
J. E.
Kollmer
,
F.
Zimber
, and
T.
Pöschel
, “
Energy dissipation in driven granular matter in the absence of gravity
,”
Phys. Rev. Lett.
111
,
018001
(
2013
).
57.
J. E.
Kollmer
,
M.
Tupy
,
M.
Heckel
,
A.
Sack
, and
T.
Pöschel
, “
Absence of subharmonic response in vibrated granular systems under microgravity conditions
,”
Phys. Rev. Applied
3
,
024007
(
2015
).
58.
A.
Sack
,
M.
Heckel
,
J. E.
Kollmer
, and
T.
Pöschel
, “
Probing the validity of an effective-one-particle description of granular dampers in microgravity
,”
Granular Matter
17
,
73
82
(
2015
).
59.
E.
Opsomer
,
F.
Ludewig
, and
N.
Vandewalle
, “
Dynamical clustering in driven granular gas
,”
Europhys. Lett.
99
,
40001
(
2012
).
60.
N.
Murdoch
,
B.
Rozitis
,
K.
Nordstrom
,
S. F.
Green
,
P.
Michel
,
T.-L.
de Lophem
, and
W.
Losert
, “
Granular convection in microgravity
,”
Phys. Rev. Lett.
110
,
018307
(
2013
).
61.
Y.
Lan
and
A. D.
Rosato
, “
Macroscopic behavior of vibrating beds of smooth inelastic spheres
,”
Phys. Fluids
7
,
1818
1831
(
1995
).
62.
B.
Meerson
,
T.
Pöschel
, and
Y.
Bromberg
, “
Close-packed floating clusters: Granular hydrodynamics beyond the freezing point?
,”
Phys. Rev. Lett.
91
,
024301
(
2003
).
63.
P.
Eshuis
,
K.
van der Weele
,
D.
van der Meer
, and
D.
Lohse
, “
Granular Leidenfrost effect: Experiment and theory of floating particle clusters
,”
Phys. Rev. Lett.
95
,
258001
(
2005
).
64.
E. W. C.
Lim
, “
Density segregation in vibrated granular beds with bumpy surfaces
,”
AIChE J.
56
,
2588
2597
(
2010
).
65.
H.
Torres
,
M.
Heckel
,
A.
Sack
, and
T.
Pöschel
, “
Granular Leidenfrost effect in microgravity
” (unpublished).
66.
Tira
, Vibration test systems (shakers) 9N to 400N.
You do not currently have access to this content.