We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °C.

1.
R. S.
Okojie
,
A. A.
Ned
, and
A. D.
Kurtz
,
Sens. Actuators, A
66
,
200
(
1998
).
2.
R.
Ziermann
,
J.
von Berg
,
W.
Reichert
,
E.
Obermeier
,
M.
Eickhoff
, and
G.
Krotz
, in
1997 International Conference on Solid-State Sensors and Actuators, TRANSDUCERS’97, Chicago
(
IEEE
,
1997
), pp.
1411
1414
.
3.
R. G.
Azevedo
,
D. G.
Jones
,
A. V.
Jog
,
B.
Jamshidi
,
D. R.
Myers
,
L.
Chen
,
X.
Fu
,
M.
Mehregany
,
M. B. J.
Wijesundara
, and
A. P.
Pisano
,
IEEE Sens. J.
7
,
568
(
2007
).
4.
D. G.
Senesky
,
B.
Jamshidi
,
K. B.
Cheng
, and
A. P.
Pisano
,
IEEE Sens. J.
9
,
1472
(
2009
).
5.
H.-P.
Phan
,
T.
Dinh
,
T.
Kozeki
,
A.
Qamar
,
T.
Namazu
,
S.
Dimitrijev
,
N.-T.
Nguyen
, and
D. V.
Dao
,
Sci. Rep.
6
,
28499
(
2016
).
6.
T.
Nagai
and
M.
Itoh
,
IEEE Trans. Ind. Appl.
26
,
1139
(
1990
).
7.
A.
De Luca
,
G.
Longobardi
, and
F.
Udrea
, in
Proceedings of 2015 International Semiconductor Conference (CAS), Sinaia, Romania
(
IEEE
,
2015
), pp.
12
14
.
8.
M. I.
Lei
, “
Silicon carbide high temperature thermoelectric flow sensor
,” Ph.D thesis,
Case Western Reserve University
,
2011
.
9.
R. N.
Dean
,
G. T.
Flowers
,
A. S.
Hodel
,
G.
Roth
,
S.
Castro
,
R.
Zhou
,
A.
Moreira
,
A.
Ahmed
,
R.
Rifki
, and
B. E.
Grantham
, in
2007 IEEE International Symposium on Industrial Electronics ISIE
(
IEEE
,
2007
), pp.
1435
1440
.
10.
A. R.
Atwell
,
R. S.
Okojie
,
K. T.
Kornegay
,
S. L.
Roberson
, and
A.
Beliveau
,
Sens. Actuators, A
104
,
11
(
2003
).
11.
12.
Y.
Zhang
,
G. R.
Pickrell
,
B.
Qi
,
A.
Safaai-Jazi
, and
A.
Wang
,
Opt. Eng.
43
,
157
(
2004
).
13.
M.
Kraft
and
N. M.
White
,
MEMS for Automotive and Aerospace Applications
(
Woodhead Publishing Limited, Cambridge
,
2013
).
14.
A. N.
Sinclair
and
A. M.
Chertov
,
Ultrasonics
57
,
1
(
2015
).
15.
A.
Baba
,
C. T.
Searfass
, and
B. R.
Tittmann
,
Appl. Phys. Lett.
97
,
232901
(
2010
).
16.
M. F.
Haider
,
V.
Giurgiutiu
,
B.
Lin
, and
L.
Yu
,
Smart Mater. Struct.
26
,
095019
(
2017
).
17.
P.
Fürjes
,
G.
Légrádi
,
C.
Dücső
,
A.
Aszódi
, and
I.
Bársony
,
Sens. Actuators, A
115
,
417
(
2004
).
18.
A.
Vescan
,
I.
Daumiller
,
P.
Gluche
,
W.
Ebert
, and
E.
Kohn
,
IEEE Electron Device Lett.
18
,
556
(
1997
).
19.
U.
Schmid
,
Sens. Actuators, A
97
,
253
(
2002
).
20.
T.
Moazzeni
,
J.
Ma
,
Y.
Jiang
, and
N.
Li
,
IEEE Trans. Instrum. Meas.
60
,
2062
(
2011
).
21.
V.
Lekholm
,
A.
Persson
,
K.
Palmer
,
F.
Ericson
, and
G.
Thornell
,
J. Micromech. Microeng.
23
,
055004
(
2013
).
22.
E.
Vereshchagina
,
R. A. M.
Wolters
, and
J. G. E.
Gardeniers
,
Sens. Actuators, A
169
,
308
(
2011
).
23.
C.
Sosna
,
M.
Kropp
,
W.
Lang
, and
R.
Buchner
, in
IEEE Sensors, 2010
(
IEEE
,
2010
), pp.
2460
2463
.
24.
M.
Wijesundara
and
R.
Azevedo
,
Silicon Carbide Microsystems for Harsh Environments
(
Springer Science & Business Media
,
2011
).
25.
R.
Neul
,
U.-M.
Gómez
,
K.
Kehr
,
W.
Bauer
,
J.
Classen
,
C.
Doring
,
E.
Esch
,
S.
Gotz
,
J.
Hauer
, and
B.
Kuhlmann
,
IEEE Sens. J.
7
,
302
(
2007
).
26.
B.
Vivekananathan
,
L.
Ponnusamy
, and
K.
Thiruppathi
, in
2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)
(
IEEE
,
2015
), pp.
1
5
.
27.
K.
Thiruppathi
,
L.
Ponnusamy
, and
B.
Vivekananathan
, in
2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)
(
IEEE
,
2015
), pp.
1
6
.
28.
W. J.
Fleming
,
IEEE Sens. J.
1
,
296
(
2001
).
29.
R. A.
Furness
,
Fluid Flow Measurement
(
Longman
,
London, UK
,
1989
).
30.
Y.
Zhao
,
K.
Chen
, and
J.
Yang
,
Measurement
38
,
230
(
2005
).
31.
R. C.
Baker
,
Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications
(
Cambridge University Press
,
2005
).
32.
G. C.
Fralick
,
J. D.
Wrbanek
, and
D. P.
Hwang
, “
Thin-film air-mass-flow sensor of improved design developed
,” Technical Report 20050214769, Publication Information: Research and Technology 2002, NASA/TM-2003-211990,
2003
, available at https://ntrs.nasa.gov/search.jsp?.
33.
C.
Lyons
,
A.
Friedberger
,
W.
Welser
,
G.
Muller
,
G.
Krotz
, and
R.
Kassing
, in
Proceedings of Eleventh Annual International Workshop on Micro Electro Mechanical Systems 1998. MEMS 98
(
IEEE
,
1998
), pp.
356
360
.
34.
N. T.
Nguyen
,
Flow Meas. Instrum.
8
,
7
(
1997
).
35.
J.
Hong
,
Y. S.
Chang
, and
D.
Kim
,
Meas. Sci. Technol.
21
,
105408
(
2010
).
36.
R.
Ahrens
and
M.
Festa
,
J. Micromech. Microeng.
20
,
064004
(
2010
).
37.
R.
Buchner
,
C.
Sosna
,
M.
Maiwald
,
W.
Benecke
, and
W.
Lang
,
Sens. Actuators, A
130–131
,
262
(
2006
).
38.
J.
Wu
and
W.
Sansen
,
Sens. Actuators, A
97-98
,
68
74
(
2002
).
39.
M.
Ritterath
,
P.
Voser
,
W.
Dietze
,
H.-M.
Prasser
, and
D.
Paladino
, in
IEEE Sensors, 2009
(
IEEE
,
2009
), pp.
1419
1422
.
40.
J. T. W.
Kuo
,
L.
Yu
, and
E.
Meng
,
Micromachines
3
,
550
(
2012
).
41.
V.
Balakrishnan
,
H.-P.
Phan
,
T.
Dinh
,
D. V.
Dao
, and
N.-T.
Nguyen
,
Sensors
17
,
2061
(
2017
).
42.
J.
Chen
,
Z.
Fan
,
J.
Zou
,
J.
Engel
, and
C.
Liu
,
J. Aerosp. Eng.
16
,
85
(
2003
).
43.
S. C. C.
Bailey
,
G. J.
Kunkel
,
M.
Hultmark
,
M.
Vallikivi
,
J. P.
Hill
,
K. A.
Meyer
,
C.
Tsay
,
C. B.
Arnold
, and
A. J.
Smits
,
J. Fluid Mech.
663
,
160
(
2010
).
44.
R. J.
Adamec
and
D. V.
Thiel
,
IEEE Sens. J.
10
,
847
(
2010
).
45.
S.-T.
Hung
,
S.-C.
Wong
, and
W.
Fang
,
Sens. Actuators, A
84
,
70
(
2000
).
46.
C.
Liu
,
J.-B.
Huang
,
Z. A.
Zhu
,
F.
Jiang
,
S.
Tung
,
Y.-C.
Tai
, and
C.-M.
Ho
,
J. Microelectromech. Syst.
8
,
90
(
1999
).
47.
P.
Liu
,
R.
Zhu
, and
R.
Que
,
Sensors
9
,
9533
(
2009
).
48.
R.-H.
Ma
,
D.-A.
Wang
,
T.-H.
Hsueh
, and
C.-Y.
Lee
,
Sensors
9
,
5460
(
2009
).
49.
G. P.
Shen
,
M.
Qin
,
Q. A.
Huang
,
H.
Zhang
, and
J.
Wu
,
Microsyst. Technol.
16
,
511
(
2010
).
50.
N.
Therdthai
,
W.
Zhou
, and
T.
Adamczak
,
J. Food Eng.
63
,
329
(
2004
).
51.
Y. H.
Wang
,
C. Y.
Lee
, and
C. M.
Chiang
,
Sensors
7
,
2389
(
2007
).
52.
Z.
Fan
,
J. M.
Engel
,
J.
Chen
, and
C.
Liu
,
J. Microelectromech. Syst.
13
,
484
(
2004
).
53.
F.
Warkusz
,
J. Phys. D: Appl. Phys.
11
,
2035
(
1978
).
54.
B. W.
van Oudheusden
,
Sens. Actuators, A
30
,
5
(
1992
).
55.
A. S.
Cubukcu
,
E.
Zernickel
,
U.
Buerklin
, and
G. A.
Urban
,
Sens. Actuators, A
163
,
449
(
2010
).
56.
P.
Bruschi
,
M.
Dei
, and
M.
Piotto
,
IEEE Sens. J.
9
,
1688
(
2009
).
57.
G.
Soundararajan
,
M.
Rouhanizadeh
,
H.
Yu
,
L.
DeMaio
,
E. S.
Kim
, and
T. K.
Hsiai
,
Sens. Actuators, A
118
,
25
(
2005
).
58.
T.
Dinh
,
H.-P.
Phan
,
T.-K.
Nguyen
,
A.
Qamar
,
P.
Woodfield
,
Y.
Zhu
,
N.-T.
Nguyen
, and
D. V.
Dao
,
J. Phys. D: Appl. Phys.
50
,
215401
(
2017
).
59.
T.
Dinh
,
H.-P.
Phan
,
T.-K.
Nguyen
,
A.
Qamar
,
A. R. M.
Foisal
,
T. N.
Viet
,
C.-D.
Tran
,
Y.
Zhu
,
N.-T.
Nguyen
, and
D. V.
Dao
,
J. Mater. Chem. C
4
,
10061
(
2016
).
60.
J. Y. W.
Seto
,
J. Appl. Phys.
46
,
5247
(
1975
).
61.
S.-G.
Hur
,
D.-J.
Kim
,
B.-D.
Kang
, and
S.-G.
Yoon
,
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
22
,
2698
(
2004
).
62.
H. P.
Phan
,
T.
Dinh
,
T.
Kozeki
,
T. K.
Nguyen
,
A.
Qamar
,
T.
Namazu
,
N. T.
Nguyen
, and
D. V.
Dao
,
Appl. Phys. Lett.
109
,
123502
(
2016
).
63.
N.
Marsi
,
B. Y.
Majlis
,
A. A.
Hamzah
, and
F.
Mohd-Yasin
,
Microsyst. Technol.
21
,
319
(
2015
).
64.
A.
Harley-Trochimczyk
,
A.
Rao
,
H.
Long
,
A.
Zettl
,
C.
Carraro
, and
R.
Maboudian
,
J. Micromech. Microeng.
27
,
045003
(
2017
).
65.
T.
Dinh
,
H.-P.
Phan
,
T.-K.
Nguyen
,
V.
Balakrishnan
,
H.-H.
Cheng
,
L.
Hold
,
A.
Lacopi
,
N.-T.
Nguyen
, and
D. V.
Dao
,
IEEE Electron Device Lett.
39
,
580
(
2018
).
66.
V.
Balakrishnan
,
T.
Dinh
,
H.-P.
Phan
,
D. V.
Dao
, and
N.-T.
Nguyen
,
Sens. Actuators, A
279
,
293
(
2018
).
67.
T.
Dinh
,
H.
Phan
,
A.
Qamar
,
P.
Woodfield
,
N.
Nguyen
, and
D. V.
Dao
,
J. Microelectromech. Syst.
26
,
966
(
2017
).
68.
T.
Dinh
,
H.-P.
Phan
,
D. V.
Dao
,
P.
Woodfield
,
A.
Qamar
, and
N.-T.
Nguyen
,
J. Mater. Chem. C
3
,
8776
(
2015
).
69.
F.
Warkusz
,
J. Phys. D: Appl. Phys.
11
,
689
(
1978
).
70.
J. S.
Shor
,
D.
Goldstein
, and
A. D.
Kurtz
,
IEEE Trans. Electron Devices
40
,
1093
(
1993
).
71.
T.
Dinh
,
H.-P.
Phan
,
T.
Kozeki
,
A.
Qamar
,
T.
Namazu
,
N.-T.
Nguyen
, and
D. V.
Dao
,
RSC Adv.
5
,
106083
(
2015
).
72.
V.
Balakrishnan
,
T.
Dinh
,
H.-P.
Phan
,
D. V.
Dao
, and
N.-T.
Nguyen
,
J. Heat Transfer
140
,
072001
(
2018
).
73.
V.
Balakrishnan
,
T.
Dinh
,
H.-P.
Phan
,
T.
Kozeki
,
T.
Namazu
,
D. V.
Dao
, and
N.-T.
Nguyen
,
J. Micromech. Microeng.
27
,
075008
(
2017
).
74.
T.
Dinh
,
H.-P.
Phan
,
T.
Kozeki
,
A.
Qamar
,
T.
Fujii
,
T.
Namazu
,
N.-T.
Nguyen
, and
D. V.
Dao
,
Mater. Lett.
177
,
80
(
2016
).
75.
A.
Bosseboeuf
,
P. E.
Allain
,
F.
Parrain
,
X.
Le Roux
,
N.
Isac
,
S.
Jacob
,
A.
Poizat
,
P.
Coste
,
S.
Maaroufi
, and
A.
Walther
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
6
,
025001
(
2015
).
76.
C.-P.
Wang
,
C.-W.
Liu
, and
C.
Gau
, in
2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
(
IEEE
,
2011
), pp.
630
633
.
You do not currently have access to this content.