We compared the performance of a commercial ammeter and a home-made integrating electrometer in reading ionisation chamber currents less than 100 pA. The integrating electrometer charges a capacitor with the unknown current and measures the resulting rate of change of voltage, whereas the ammeter uses a high-value resistor as the feedback element to an amplifier which converts current to voltage. The noise performance of both systems was very similar for averaging times less than 1000 s. Both systems were calibrated using a reference current source with 1 part per million (ppm) accuracy, revealing an error of 460 ppm in the electrometer indicated current, of unknown origin. This error is well within the uncertainty budget for radionuclide calibrations but much larger than the individual uncertainties in the traceable calibrations of capacitance, voltage, and time. The noise in the ionisation chamber current was much larger than the noise floor of both instruments, with tests providing strong indication that the excess noise originated in the high voltage source used for energising the chamber.

1.
H.
Schrader
, “
Activity measurements with ionization chambers
,” BIPM Monograph,
1997
.
2.
H.
Schrader
, “
Ionization chambers
,”
Metrologia
44
,
S53
(
2007
).
3.
G.-D.
Willenberg
,
H. N.
Tauscher
, and
P.
Warnecke
, “
A traceable precision current source for currents between 100 aA and 10 pA
,”
IEEE Trans. Instrum. Meas.
52
,
436
439
(
2003
).
4.
H. E.
van den Brom
,
P.
de la Court
, and
G.
Rietveld
, “
Accurate subpicoampere current source based on a differentiating capacitor with software-controlled nonlinearity compensation
,”
IEEE Trans. Instrum. Meas.
54
,
554
558
(
2005
).
5.
N. E.
Fletcher
,
S. P.
Giblin
,
J. M.
Williams
, and
K. J.
Lines
, “
New capability for generating and measuring small DC currents at NPL
,”
IEEE Trans. Instrum. Meas.
56
,
326
330
(
2007
).
6.
L.
Callegaro
,
V.
D’Elia
, and
B.
Trinchera
, “
A current source for picoammeter calibration
,”
IEEE Trans. Instrum. Meas.
56
,
1198
1201
(
2007
).
7.
G.
Willenberg
, “
EUROMET. EM-S24: Supplementary comparison of small current sources
,”
Metrologia
50
,
01002
(
2013
).
8.
J. P.
Pekola
,
O.-P.
Saira
,
V. F.
Maisi
,
A.
Kemppinen
,
M.
Möttönen
,
Y. A.
Pashkin
, and
D. V.
Averin
, “
Single-electron current sources: Toward a refined definition of the ampere
,”
Rev. Mod. Phys.
85
,
1421
(
2013
).
9.
F.
Stein
,
H.
Scherer
,
T.
Gerster
,
R.
Behr
,
M.
Götz
,
E.
Pesel
,
C.
Leicht
,
N.
Ubbelohde
,
T.
Weimann
,
K.
Pierz
 et al., “
Robustness of single-electron pumps at sub-ppm current accuracy level
,”
Metrologia
54
,
S1
(
2016
).
10.
R.
Zhao
,
A.
Rossi
,
S.
Giblin
,
J.
Fletcher
,
F.
Hudson
,
M.
Möttönen
,
M.
Kataoka
, and
A.
Dzurak
, “
Thermal-error regime in high-accuracy gigahertz single-electron pumping
,”
Phys. Rev. Appl.
8
,
044021
(
2017
).
11.
D.
Drung
,
C.
Krause
,
U.
Becker
,
H.
Scherer
, and
F. J.
Ahlers
, “
Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy
,”
Rev. Sci. Instrum.
86
,
024703
(
2015
).
12.
D.
Drung
and
C.
Krause
, “
Ultrastable low-noise current amplifiers with extended range and improved accuracy
,”
IEEE Trans. Instrum. Meas.
66
,
1425
1432
(
2017
).
13.
D.
Drung
,
M.
Götz
,
E.
Pesel
, and
H.
Scherer
, “
Improving the traceable measurement and generation of small direct currents
,”
IEEE Trans. Instrum. Meas.
64
,
3021
3030
(
2015
).
14.
D.
Drung
,
C.
Krause
,
S. P.
Giblin
,
S.
Djordjevic
,
F.
Piquemal
,
O.
Séron
,
F.
Rengnez
,
M.
Götz
,
E.
Pesel
, and
H.
Scherer
, “
Validation of the ultrastable low-noise current amplifier as travelling standard for small direct currents
,”
Metrologia
52
,
756
(
2015
).
15.
C.
Krause
,
D.
Drung
, and
H.
Scherer
, “
Measurement of sub-picoampere direct currents with uncertainties below ten attoamperes
,”
Rev. Sci. Instrum.
88
,
024711
(
2017
).
16.
N. E.
Fletcher
,
J. M.
Williams
, and
T. J. B. M.
Janssen
, “
A cryogenic current comparator resistance ratio bridge for the range 10 kOhm to 1 GOhm
,” in
2000 Conference on Precision Electromagnetic Measurements Digest
(
IEEE
,
2000
), pp.
482
483
.
17.
M. E.
Bierzychudek
and
R. E.
Elmquist
, “
Uncertainty evaluation in a two-terminal cryogenic current comparator
,”
IEEE Trans. Instrum. Meas.
58
,
1170
1175
(
2009
).
18.
B.
Kibble
and
G. H.
Rayner
,
Coaxial AC Bridges
(
Taylor & Francis Group
,
1984
).
19.
S.
Giblin
,
G.
Willenberg
, and
N.
Fletcher
, “
Frequency dependence of gas-dielectric capacitors used in sub-nA reference current generators
,” in
27th Conference on Precision Electromagnetic Measurements (CPEM 2010)
(
CPEM
,
2010
).
20.

We could have used the 100 pA range, achieving slightly lower instrument noise at the expense of slower response time. However, the noise in IA is roughly two orders of magnitude higher than the instrument noise floor so no benefit is obtained by using a lower range.

21.

The term “noise,” frequently used in this paper, means random fluctuations in a measured signal, irrespective of the origin of those fluctuations.

22.
J. G.
Graeme
and
J. G.
Graeme
,
Photodiode Amplifiers: OP AMP Solutions
(
McGraw-Hill
,
New York
,
1996
).
23.
D. W.
Allan
, “
Should the classical variance be used as a basic measure in standards metrology?
,”
IEEE Trans. Instrum. Meas.
IM-36
,
646
654
(
1987
).
24.
T.
Witt
and
D.
Reymann
, “
Using power spectra and Allan variances to characterise the noise of Zener-diode voltage standards
,”
IEE Proc.-A: Sci., Meas. Technol.
147
,
177
182
(
2000
).
25.
J.
Williams
,
T.
Janssen
,
G.
Rietveld
, and
E.
Houtzager
, “
An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements
,”
Metrologia
47
,
167
(
2010
).
26.

Instability in the analogue-to-digital conversion of the preamp output voltage can be ameliorated by using the ammeter’s auto zero function. However, each reading then takes at least twice as long.

27.

The averaging time at which the Allan deviation changes from white-noise behaviour to frequency-dependent behaviour depends on the instrument range, the stability of the environmental conditions and the particular unit of instrument (of the same model number).

28.
S.
Giblin
,
E.
Bakshandier
,
N.
Fletcher
,
K.
Lines
, and
J.
Sephton
, “
An SI traceable electrometer system for radionuclide metrology
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
606
,
824
828
(
2009
).
You do not currently have access to this content.