The Tandetron Laboratory of the Nuclear Physics Institute of the Czech Academy of Sciences is equipped with five beam lines associated with a 3 MV tandem electrostatic accelerator model 4130 MC from High Voltage Engineering Europa B.V. This accelerator is coupled with two duoplasmatron sources and a single sputter ion source and provides ions from hydrogen to gold. One of these lines is a nuclear microbeam facility, utilizing ion beams of micro- and sub-micro sizes for materials research by use of particle induced x-ray emission spectroscopy, particle induced gamma emission, Rutherford back-scattering spectroscopy, and scanning transmission ion microscopy methods as well as for ion beam writing. The major advantage of the presented microprobe is a possibility of 3D structure creation not only in polymer materials using light ions but also in other materials such as glass, ceramics, etc. by use of heavy ions. The focusing system allows focusing of charged particles with a maximum rigidity of 11 MeV amu/q2. The usual resolution in high and low current modes is 2 × 3 µm2 for a 100 pA and 0.3 × 0.5 µm2 for the 2000 ions/s of 2 MeV protons, respectively. A detailed facility description is given in the paper. The applications of focused beams of heavy ions as well as examples of light ions utilizing are also presented in the article.

1.
R.
Hinrichs
,
A. P. L.
Bertol
, and
M. A. Z.
Vasconcellos
,
Nucl. Instrum. Methods Phys. Res., Sect. B
363
,
75
(
2015
).
2.
A. D. C.
Alves
,
S.
Thompson
,
C.
Yang
, and
D. N.
Jamieson
,
Nucl. Instrum. Methods Phys. Res., Sect. B
269
,
2355
(
2011
).
3.
A.
Macková
,
V.
Havránek
,
J.
Vacík
,
L.
Salavcová
, and
J.
Špirková
,
Nucl. Instrum. Methods Phys. Res., Sect. B
249
,
856
(
2006
).
4.
R.
Huszank
,
A.
Simon
,
E.
Szilágyi
,
K.
Keresztessy
, and
I.
Kovács
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
2132
(
2009
).
5.
W.
Maenhaut
,
Nucl. Instrum. Methods Phys. Res., Sect. B
363
,
86
(
2015
).
6.
A.
Macková
,
L.
Salavcová
,
J.
Špirková
,
R.
Groetzschel
, and
F.
Eichhorn
,
Nucl. Instrum. Methods Phys. Res., Sect. B
249
,
339
(
2006
).
7.
R.
Ishigami
,
Y.
Ito
, and
K.
Yasuda
,
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
1319
(
2008
).
8.
A.
Mackova
,
P.
Malinsky
,
B.
Svecova
,
P.
Nekvindova
, and
R.
Grötzschel
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
2042
(
2010
).
9.
R.
Minqin
,
J. A.
van Kan
,
A. A.
Bettiol
,
L.
Daina
,
C. Y.
Gek
,
B. B.
Huat
,
H. J.
Whitlow
,
T.
Osipowicz
, and
F.
Watt
,
Nucl. Instrum. Methods Phys. Res., Sect. B
260
,
124
(
2007
).
10.
P.
Malinský
,
A.
Macková
,
R.
Mikšová
,
H.
Kováčiková
,
M.
Cutroneo
,
J.
Luxa
,
D.
Bouša
,
B.
Štrochová
, and
Z.
Sofer
,
Phys. Chem. Chem. Phys.
19
,
10282
(
2017
).
11.
X.
Liu
,
Y.
Miao
,
M.
Li
,
M. K.
Kirk
,
S. A.
Maloy
, and
J. F.
Stubbins
,
J. Nucl. Mater.
490
,
305
(
2017
).
12.
R.
Mikšová
,
A.
Macková
,
H.
Pupikova
,
P.
Malinský
,
P.
Slepička
, and
V.
Švorčík
,
Nucl. Instrum. Methods Phys. Res., Sect. B
406
,
199
(
2017
).
13.
G.
Gawlik
,
P.
Ciepielewski
,
J.
Jagielski
, and
J.
Baranowski
,
Nucl. Instrum. Methods Phys. Res., Sect. B
406
,
683
(
2017
).
14.
V.
Hnatowicz
,
V.
Havránek
,
J.
Bočan
,
A.
Macková
,
J.
Vacík
, and
V.
Švorčík
,
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
283
(
2008
).
15.
Y. Q.
Li
,
C.
Habchi
,
X.
Liu
,
Y. Y.
Liu
,
Y.
Zheng
,
X. Y.
Li
, and
H.
Shen
,
Fusion Eng. Des.
88
,
188
(
2013
).
16.
N.
Guo
,
H. Y.
Lu
,
Q.
Wang
,
J.
Meng
,
D. Z.
Gao
,
Y. J.
Zhang
,
X. X.
Liang
,
W.
Zhang
,
J.
Li
,
X. J.
Ma
, and
H.
Shen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
404
,
162
(
2017
).
17.
R.
Sano
,
S.
Hayakawa
,
H.
Hayashi
,
Y.
Ishii
, and
H.
Nishikawa
,
Nucl. Instrum. Methods Phys. Res., Sect. B
404
,
228
(
2017
).
18.
I.
Bányász
,
I.
Rajta
,
G. U. L.
Nagy
,
Z.
Zolnai
,
V.
Havranek
,
S.
Pelli
,
M.
Veres
,
S.
Berneschi
,
G.
Nunzi-Conti
, and
G. C.
Righini
,
Nucl. Instrum. Methods Phys. Res., Sect. B
331
,
157
(
2014
).
19.
Y.
Yao
,
C.
Zhang
,
S. K.
Vanga
,
A. A.
Bettiol
, and
F.
Chen
,
Opt. Mater.
35
,
2257
(
2013
).
20.
T.
Calligaro
,
J. C.
Dran
,
E.
Ioannidou
,
B.
Moignard
,
L.
Pichon
, and
J.
Salomon
,
Nucl. Instrum. Methods Phys. Res., Sect. B
161
,
328
(
2000
).
21.
L.
Giuntini
,
M.
Massi
, and
S.
Calusi
,
Nucl. Instrum. Methods Phys. Res., Sect. A
576
,
266
(
2007
).
22.
L.
Breuer
,
F.
Meinerzhagen
,
M.
Bender
,
D.
Severin
, and
A.
Wucher
,
Nucl. Instrum. Methods Phys. Res., Sect. B
365
,
482
(
2015
).
23.
B. N.
Jones
,
V.
Palitsin
, and
R.
Webb
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1714
(
2010
).
24.
See http://www.ujf.cas.cz/en/research-development/open-access/ for information about access to the institute facilities..
25.
G.
Devès
,
S.
Matsuyama
,
Y.
Barbotteau
,
K.
Ishii
, and
R.
Ortega
,
Rev. Sci. Instrum.
77
,
056102
(
2006
).
26.
G. W.
Grime
and
M.
Dawson
,
Nucl. Instrum. Methods Phys. Res., Sect. B
104
,
107
(
1995
).
27.
A. G.
Ponomarev
,
K. I.
Melnik
, and
V. I.
Miroshnichenko
,
Nucl. Instrum. Methods Phys. Res., Sect. B
231
,
86
(
2005
).
28.
A.
Dymnikov
and
R.
Hellborg
,
Nucl. Instrum. Methods Phys. Res., Sect. A
330
,
323
(
1993
).
29.
P.
Malinský
,
M.
Cutroneo
,
A.
Macková
,
V.
Hnatowicz
,
M.
Florianová
,
M.
Boháčová
,
D.
Bouša
, and
Z.
Sofer
,
Surf. Coat. Technol.
342
,
220
(
2018
).
30.
P.
Malinský
,
M.
Cutroneo
,
A.
Macková
,
V.
Hnatowicz
,
K.
Szökölová
,
M.
Bohačová
,
J.
Luxa
, and
Z.
Sofer
,
Surf. Interface Anal.
50
,
1110
(
2018
).
31.
G. U. L.
Nagy
,
V.
Lavrentiev
,
I.
Bányász
,
S. Z.
Szilasi
,
V.
Havranek
,
V.
Vosecek
,
R.
Huszánk
, and
I.
Rajta
,
Thin Solid Films
636
,
634
(
2017
).
32.
M.
Cutroneo
,
V.
Havranek
,
A.
Mackova
,
V.
Semian
,
L.
Torrisi
, and
L.
Calcagno
,
Nucl. Instrum. Methods Phys. Res., Sect. B
371
,
344
(
2016
).
33.
M. D. A.
Michaelidesová
,
J.
Vachelová
,
J.
Konířová
,
I.
Falková
,
M.
Falk
,
V.
Havránek
,
J.
Štursa
, and
V.
Zach
, in
Book of Abstracts Conference on Cell Biology and Radiobiology, Brno, Czech Republic, 8–11 September 2016
, edited by
M.
Falk
(
IBP CAS, v.v.i.
,
Brno
,
2016
), p.
13
.
You do not currently have access to this content.