Atomic force microscopy (AFM) was introduced in 1986 and has since made its way into surface science, nanoscience, chemistry, biology, and material science as an imaging and manipulating tool with a rising number of applications. AFM can be employed in ambient and liquid environments as well as in vacuum and at low and ultralow temperatures. The technique is an offspring of scanning tunneling microscopy (STM), where the tunneling tip of the STM is replaced by using a force sensor with an attached tip. Measuring the tiny chemical forces that act between the tip and the sample is more difficult than measuring the tunneling current in STM. Therefore, even 30 years after the introduction of AFM, progress in instrumentation is substantial. Here, we focus on the core of the AFM, the force sensor with its tip and detection mechanism. Initially, force sensors were mainly micro-machined silicon cantilevers, mainly using optical methods to detect their deflection. The qPlus sensor, originally based on a quartz tuning fork and now custom built from quartz, is self-sensing by utilizing the piezoelectricity of quartz. The qPlus sensor allows us to perform STM and AFM in parallel, and the spatial resolution of its AFM channel has reached the subatomic level, exceeding the resolution of STM. Frequency modulation AFM (FM-AFM), where the frequency of an oscillating cantilever is altered by the gradient of the force that acts between the tip and the sample, has emerged over the years as the method that provides atomic and subatomic spatial resolution as well as force spectroscopy with sub-piconewton sensitivity. FM-AFM is precise; because of all physical observables, time and frequency can be measured by far with the greatest accuracy. By design, FM-AFM clearly separates conservative and dissipative interactions where conservative forces induce a frequency shift and dissipative interactions alter the power needed to maintain a constant oscillation amplitude of the cantilever. As it operates in a noncontact mode, it enables simultaneous AFM and STM measurements. The frequency stability of quartz and the small oscillation amplitudes that are possible with stiff quartz sensors optimize the signal to noise ratio. Here, we discuss the operating principles, the assembly of qPlus sensors, amplifiers, limiting factors, and applications. Applications encompass unprecedented subatomic spatial resolution, the measurement of forces that act in atomic manipulation, imaging and spectroscopy of spin-dependent forces, and atomic resolution of organic molecules, graphite, graphene, and oxides.

1.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover Publications
,
New York
,
1970
).
2.
T. R.
Albrecht
,
P.
Grutter
,
H. K.
Horne
, and
D.
Rugar
, “
Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity
,”
J. Appl. Phys.
69
,
668
(
1991
).
3.
F.
Albrecht
,
N.
Pavlicek
,
C.
Herranz-Lancho
,
M.
Ruben
, and
J.
Repp
, “
Characterization of a surface reaction by means of atomic force microscopy
,”
J. Am. Chem. Soc.
137
,
7424
(
2015
).
4.
F.
Albrecht
,
F.
Bischoff
,
W.
Auwärter
,
J. V.
Barth
, and
J.
Repp
, “
Direct identification and determination of conformational response in adsorbed individual nonplanar molecular species using noncontact atomic force microscopy
,”
Nano Lett.
16
,
7703
(
2016
).
5.
See http://www.americanmagnetics.com/charactr.php for American Magnetics, 112 Flint Rd, Oak Ridge, TN 37830-7068.
6.
T.
An
,
T.
Eguchi
,
K.
Akiyama
, and
Y.
Hasegawa
, “
Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator
,”
Appl. Phys. Lett.
87
,
133114
(
2005
).
7.
T.
An
,
T.
Nishio
,
T.
Eguchi
,
M.
Ono
,
A.
Nomura
,
K.
Akiyama
, and
Y.
Hasegawa
, “
Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator
,”
Rev. Sci. Instrum.
79
,
033703
(
2008
).
8.
S.
An
,
B.
Sung
,
H.
Noh
,
S.
Corey
,
S.
Kwon
,
K.
Lee
,
B.
Kim
,
Q.
Kim
, and
W.
Jhe
, “
Position-resolved surface characterization and nanofabrication using an optical microscope combined with a nanopipette/quartz tuning fork atomic force microscope
,”
Nano-Micro Lett.
6
,
70
(
2014
).
9.
See www.analog.com for Analog Devices, One Technology Way, P.O. BOX 9106 Norwood, MA 02062, USA.
10.
B.
Anczykowski
,
D.
Kruger
, and
H.
Fuchs
, “
Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects
,”
Phys. Rev. B
53
,
15485
(
1996
).
11.
See www.atceramics.com for American Technical Ceramics, One Norden Lane, Huntington Station, NY 11746, USA.
12.
L.
Bartels
,
G.
Meyer
, and
K. H.
Rieder
, “
Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast
,”
Appl. Phys. Lett.
71
,
213
(
1997
).
13.
K.
Bartzke
,
T.
Antrack
,
K.-H.
Schmidt
,
E.
Dammann
, and
C. H.
Schatterny
, “
The needle sensor-a micromechanical detector for atomic force microscopy
,”
Int. J. Optoelectron.
8
,
669
(
1993
).
14.
K.
Bartzke
,
T.
Antrack
,
K.
Besocke
, and
E.
Dammann
, “
Arrangement for determining the topography of a surface
,”
German Patent and Trademark Office
, Patent DE 19513529A1 (
1995
).
15.
S.
Baumann
,
I. G.
Rau
,
S.
Loth
,
C. P.
Lutz
, and
A. J.
Heinrich
, “
Measuring the three-dimensional structure of ultrathin insulating films at the atomic scale
,”
ACS Nano
8
,
1739
(
2014
).
16.
M. Z.
Baykara
,
M.
Todorovic
,
H.
Mönig
,
T. C.
Schwendemann
,
O.
Uenverdi
,
L.
Rodrigo
,
E. I.
Altman
,
R.
Perez
, and
U.
Schwarz
, “
Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements
,”
Phys. Rev. B
87
,
155414
(
2013
).
17.
M. Z.
Baykara
,
H.
Mönig
,
T. C.
Schwendemann
,
Ö.
Ünverdi
,
E. I.
Altman
, and
U. D.
Schwarz
,
Appl. Phys. Lett.
108
,
071601
(
2016
).
18.
J.
Berwanger
,
F.
Huber
,
F.
Stilp
, and
F. J.
Giessibl
, “
Lateral manipulation with combined atomic force and scanning tunneling microscopy using CO-terminated tips
,”
Phys. Rev. B
98
,
195409
(
2018
).
19.
A.
Bettac
,
J.
Koeble
,
K.
Winkler
,
B.
Uder
,
M.
Maier
, and
A.
Feltz
, “
QPlus: Atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K
,”
Nanotechnology
20
,
264009
(
2009
).
20.
H.
Bielefeldt
and
F. J.
Giessibl
, “
A simplified but intuitive analytical model for intermittent-contact-mode force microscopy based on Hertzian mechanics
,”
Surf. Sci.
440
,
L863
(
1999
).
21.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
, “
Tunneling through a controllable vacuum gap
,”
Appl. Phys. Lett.
40
,
178
(
1982
).
22.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
, “
7 × 7 reconstruction on Si(111) resolved in real space
,”
Phys. Rev. Lett.
50
,
120
(
1983
).
23.
G.
Binnig
and
H.
Rohrer
, “
Nobel lecture: Scanning tunneling microscopy—From birth to adolescence
,”
Rev. Mod. Phys.
59
,
615
(
1987
).
24.
G.
Binnig
, “
Atomic force microscope and method for imaging surfaces with atomic resolution
,” U.S. Patent No 4,724,318 (
26 November 1985
).
25.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
,
930
(
1986
).
26.
G.
Binnig
and
D. P. E.
Smith
, “
Single-tube three-dimensional scanner for scanning tunneling microscopy
,”
Rev. Sci. Instrum.
57
,
1688
(
1986
).
27.
F.
Bischoff
,
Y.
He
,
A.
Riss
,
K.
Seufert
,
W.
Auwärter
, and
J. V.
Barth
, “
Exploration of interfacial porphine coupling schemes and hybrid systems by bond-resolved scanning probe microscopy
,”
Angew. Chem.
57
,
16030
(
2018
).
28.
M. P.
Boneschanscher
,
J.
van der Lit
,
Z.
Sun
,
I.
Swart
,
P.
Liljeroth
, and
D.
Vanmaekelbergh
, “
Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes
,”
ACS Nano
6
,
10216
(
2012
).
29.
C.
Büchner
,
L.
Lichtenstein
,
X.
Yu
,
A.
Boscoboinik
,
B.
Yang
,
W. E.
Kaden
,
M.
Heyde
,
S. K.
Shaikhutdinov
,
R.
Włodarczyk
,
M.
Sierka
,
J.
Sauer
, and
H.-J.
Freund
, “
Ultrathin silica films: The atomic structure of two-dimensional crystals and glasses
,”
Chem. - Eur. J.
20
,
9176
(
2014
).
30.
N.
Burnham
and
R. J.
Colton
, “
Measuring the nanomechanical and surface forces of materials using the atomic force microscope
,”
J. Vac. Sci. Technol., A
7
,
2906
(
1989
).
31.
L.
Canale
,
A.
Laborieux
,
A.
Aroul Mogane
,
L.
Jubin
,
J.
Comtet
,
A.
Laine
,
L.
Bocquet
,
A.
Siria
, and
A.
Nigues
, “
MicroMegascope
,”
Nanotechnology
29
,
355501
(
2018
).
32.
See www.ceramtec.de for CeramTec GmbH, CeramTec-Weg 1, D-95615 Marktredwitz, Germany.
33.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press
,
New York, Oxford
,
1993
).
34.
C.
Chiutu
,
A. M.
Sweetman
,
A. J.
Lakin
,
A.
Stannard
,
S.
Jarvis
,
L.
Kantorovich
,
J. L.
Dunn
, and
P.
Moriarty
, “
Precise orientation of a single C-60 molecule on the tip of a scanning probe microscope
,”
Phys. Rev. Lett.
108
,
268302
(
2012
).
35.
J. P.
Cleveland
,
B.
Anczykowski
,
A. E.
Schmid
, and
V. B.
Elings
, “
Energy dissipation in tapping-mode atomic force microscopy
,”
Appl. Phys. Lett.
72
,
2613
(
1998
).
36.
See http://creativecommons.org/licenses/by/4.0 for information on terms of creative common licenses.
37.
O. E.
Dagdeviren
and
U. D.
Schwarz
, “
Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis
,”
Beilstein J. Nanotechnol.
8
,
657
(
2017
).
38.
F.
de Faria Elsner
, “
Untersuchung der rauschgrenzen bei der messung kleinster mechanischer auslenkungen
,” Diploma thesis,
University of Regensburg
,
Germany
,
2010
.
39.
B.
de la Torre
,
M.
Švec
,
G.
Foti
,
O.
Krejčí
,
P.
Hapala
,
A.
Garcia-Lekue
,
T.
Frederiksen
,
R.
Zbořil
,
A.
Arnau
,
H.
Vázquez
, and
P.
Jelínek
, “
Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal
,”
Phys. Rev. Lett.
119
,
166001
(
2017
).
40.
B.
de la Torre
,
M.
Švec
,
P.
Hapala
,
J.
Redondo
,
O.
Krejci
,
R.
Lo
,
D.
Manna
,
A.
Sarmah
,
D.
Nachtigallova
,
J.
Tucek
,
P.
Blonski
,
M.
Otyepka
,
R.
Zboril
,
P.
Hobza
, and
P.
Jelinek
, “
Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene
,”
Nat. Commun.
9
,
2831
(
2018
).
41.
W.
Denk
and
D. W.
Pohl
, “
Local electrical dissipation imaged by scanning force microscopy
,”
Appl. Phys. Lett.
59
,
2171
(
1991
).
42.
D. G.
de Oteyza
,
P.
Gorman
,
Y.-C.
Chen
,
S.
Wickenburg
,
A.
Riss
,
D. J.
Mowbray
,
G.
Etkin
,
Z.
Pedramrazi
,
H.-Z.
Tsai
,
A.
Rubio
,
M. F.
Crommie
, and
F. R.
Fischer
, “
Direct imaging of covalent bond structure in single-molecule chemical reactions
,”
Science
340
,
1434
(
2013
).
43.

Detector noise—Note. In previous works [Eq. (2.43) in Ref. 167, Eq. (51) in Ref. 86], a factor 2 was erroneously missing - we have to consider that the actual deflection rms error is up to ±nqB1/2

44.
U.
Diebold
, “
The surface science of titanium dioxide
,”
Surf. Sci. Rep.
48
,
53
(
2003
).
45.
K.
Dransfeld
,
P.
Guethner
, and
K.
Heitmann
, “
Acoustic screen scan microscope for the examination of an object in the short-range field of a resonant acoustic oscillator
,”
United States Patent and Trademark Office
, U.S. Patent 5,212,987 (
16 June 1988
).
46.
U.
Dürig
,
J. K.
Gimzewski
, and
D. W.
Pohl
, “
Experimental observation of forces acting during scanning tunneling microscopy
,”
Phys. Rev. Lett.
57
,
2403
(
1986
).
47.
U.
Dürig
,
O.
Züger
, and
A.
Stalder
, “
Interaction force detection in scanning probe microscopy: Methods and applications
,”
J. Appl. Phys.
72
,
1778
(
1992
).
48.
U.
Dürig
,
H. R.
Steinauer
, and
N.
Blanc
, “
Dynamic force microscopy by means of the phase-controlled oscillator method
,”
J. Appl. Phys.
82
,
3641
(
1997
).
49.
U.
Dürig
, “
Interaction sensing in dynamic force microscopy
,”
New J. Phys.
2
,
5
(
2000
).
50.
T.
Eguchi
and
Y.
Hasegawa
, “
High resolution atomic force microscopic imaging of the Si(111)-(7 × 7) surface: Contribution of short-range force to the images
,”
Phys. Rev. Lett.
89
,
266105
(
2002
).
51.
D. M.
Eigler
and
E. K.
Schweizer
, “
Positioning single atoms with a scanning tunnelling microscope
,”
Nature
344
,
524
(
1990
).
52.
M.
Emmrich
,
M.
Schneiderbauer
,
F.
Huber
,
A. J.
Weymouth
,
N.
Okabayashi
, and
F. J.
Giessibl
, “
Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip
,”
Phys. Rev. Lett.
114
,
146101
(
2015
).
53.
M.
Emmrich
,
F.
Huber
,
F.
Pielmeier
,
J.
Welker
,
T.
Hofmann
,
M.
Schneiderbauer
,
D.
Meuer
,
S.
Polesya
,
S.
Mankovsky
,
D.
Ködderitzsch
,
H.
Ebert
, and
F. J.
Giessibl
, “
Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters
,”
Science
348
,
308
(
2015
).
54.

Epoxy Technology, Inc., 14 Fortune Drive, Billerica, MA 01821-3972, USA

55.
T.
Esat
,
N.
Friedrich
,
F. S.
Tautz
, and
R.
Temirov
, “
A standing molecule as a single-electron field emitter
,”
Nature
558
,
573
(
2018
).
56.
A.
Extance
, “
The atomic-force revolution
,”
Nature
555
,
545
(
2018
).
57.
A.
Extance
, “
New AFM tip reopens hydrogen bond imaging debate
,” in
Chemistry World
(
April 11
,
2018
), https://www.chemistryworld.com/news/new-afm-tip-reopens-hydrogen-bond-imaging-debate/3008878.article.
58.
S.
Fatayer
,
N. B.
Poddar
,
S.
Quiroga
,
F.
Schulz
,
B.
Schuler
,
S. V.
Kalpathy
,
G.
Meyer
,
D.
Perez
,
E.
Guitian
,
D.
Pena
,
M. J.
Wornat
, and
L.
Gross
, “
Atomic force microscopy identifying fuel pyrolysis products and directing the synthesis of analytical standards
,”
J. Am. Chem. Soc.
140
,
8156
(
2018
).
59.
S.
Fatayer
,
A. I.
Coppola
,
F.
Schulz
,
B. D.
Walker
,
T. A.
Broek
,
G.
Meyer
,
R.
Ellen
,
M.
Druffel
,
M.
McCarthy
, and
L.
Gross
, “
Direct visualization of individual aromatic compound structures in low molecular weight marine dissolved organic carbon
,”
Geophys. Res. Lett.
45
,
5590
, https://doi.org/10.1029/2018gl077457 (
2018
).
60.

Femto HQA-15M-10T, Femto GmbH, Berlin, Germany

61.
R. P.
Feynman
, “
There’s plenty of room at the bottom
,” in
An Invitation to Enter a New Field of Physics was a Lecture Given at the Annual American Physical Society Meeting at Caltech On December 29, 1959, Reprinted
[
J. Microelectromech. Syst.
1
,
60
(
1992
)].
62.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison Wesley Publishing Company
,
Reading, MD, USA
,
1964
).
63.
N.
Fournier
,
C.
Wagner
,
C.
Weiss
,
R.
Temirov
, and
F. S.
Tautz
, “
Force-controlled lifting of molecular wires
,”
Phys. Rev. B
84
,
035435
(
2011
).
64.
R.
Garcia
and
R.
Perez
, “
Dynamic atomic force microscopy methods
,”
Surf. Sci. Rep.
47
,
197
(
2002
).
65.
R.
Garcia
and
E. T.
Herruzo
, “
The emergence of multifrequency force microscopy
,”
Nat. Nanotechnol.
7
,
217
(
2012
).
66.
M. F. B.
Green
,
T.
Esat
,
C.
Wagner
,
P.
Leinen
,
A.
Grötsch
,
F.
Stefan Tautz
, and
R.
Temirov
, “
Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope
,”
Beilstein J. Nanotechnol.
5
,
1926
(
2014
).
67.
M. F. B.
Green
,
C.
Wagner
,
P.
Leinen
,
T.
Deilmann
,
P.
Krüger
,
M.
Rohlfing
,
F.
Stefan Tautz
, and
R.
Temirov
, “
Scanning quantum dot microscopy: A quantitative method to measure local electrostatic potential near surfaces
,”
Jpn. J. Appl. Phys., Part 1
55
,
08NA04
(
2016
).
68.
F. J.
Giessibl
and
G.
Binnig
, “
Investigation of the (001) cleavage plane of potassium bromide with an atomic force microscope at 4.2 K in ultra-high vacuum
,”
Ultramicroscopy
42-44
,
281
(
1992
).
69.
F. J.
Giessibl
, “
Atomic force microscopy in ultrahigh vacuum
,”
Jpn. J. Appl. Phys., Part 1
33
,
3726
(
1994
).
70.
F. J.
Giessibl
and
B.
Trafas
, “
Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum
,”
Rev. Sci. Instrum.
65
,
1923
(
1994
).
71.
F. J.
Giessibl
, “
Atomic resolution of the silicon (111)-7 × 7 surface by atomic force microscopy
,”
Science
267
,
68
(
1995
).
72.
F. J.
Giessibl
, “
Vorrichtung zum berührungslosen abtasten von oberflächen und verfahren dafür
,”
German Patent and Trademark Office
, Patent DE 19633546 (
20 April 2000
).
73.
F. J.
Giessibl
, “
Device for noncontact/intermittent contact scanning of a surface and process therefore
,”
US Patent and Trademark Office
, U.S. Patent US 6240771 (
6 June 2001
).
74.
F. J.
Giessibl
, “
Sensor zum berührungslosen abtasten einer oberfläche
,”
German Patent and Trademark Office
, Patent DE 10 2010052037 (
18 April 2013
).
75.
F. J.
Giessibl
, “
Sensor for noncontact profiling of a surface
,”
US Patent and Trademark Office
, US patent 8393009 (
5 March 2013
).
76.
F. J.
Giessibl
, “
Sensor for noncontact profiling of a surface
,”
Chinese Patent and Trademark Office
, Chinese Patent Registration No. CN102662085A, Granted October 28 2015 under Patent No. ZL201110373640.3 (
28 October 2015
).
77.
F. J.
Giessibl
, “
Registered trademark ‘QPLUS’ (wordmark)
,”
US Patent and Trademark Office
, US Serial No. 77788740, Registration No. 3918525, Registration Date 15 February 2011.
78.
F. J.
Giessibl
, “
Forces and frequency shifts in atomic-resolution dynamic-force microscopy
,”
Phys. Rev. B
56
,
16010
(
1997
).
79.
F. J.
Giessibl
, “
High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
,”
Appl. Phys. Lett.
73
,
3956
(
1998
).
80.
F. J.
Giessibl
,
H.
Bielefeldt
,
S.
Hembacher
, and
J.
Mannhart
, “
Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy
,”
Appl. Surf. Sci.
140
,
352
(
1999
).
81.
F. J.
Giessibl
, “
Atomic resolution on Si (111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork
,”
Appl. Phys. Lett.
76
,
1470
(
2000
).
82.
F. J.
Giessibl
,
S.
Hembacher
,
H.
Bielefeldt
, and
J.
Mannhart
, “
Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy
,”
Science
289
,
422
(
2000
).
83.
F. J.
Giessibl
and
H.
Bielefeldt
, “
Physical interpretation of frequency-modulation atomic force microscopy
,”
Phys. Rev. B
61
,
9968
(
2000
).
84.
F. J.
Giessibl
, “
A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy
,”
Appl. Phys. Lett.
78
,
123
(
2001
).
85.
F. J.
Giessibl
,
M.
Herz
, and
J.
Mannhart
, “
Friction traced to the single atom
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12006
(
2002
).
86.
F. J.
Giessibl
, “
Advances in atomic force microscopy
,”
Rev. Mod. Phys.
75
,
949
(
2003
).
87.
F. J.
Giessibl
,
S.
Hembacher
,
M.
Herz
,
Ch.
Schiller
, and
J.
Mannhart
, “
Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: The qPlus sensor
,”
Nanotechnology
15
,
S79
(
2004
).
88.
F. J.
Giessibl
, “
AFM’s path to atomic resolution
,”
Mater. Today
8
,
32
(
2005
).
89.
F. J.
Giessibl
and
M.
Reichling
, “
Investigating atomic details of the CaF2(111) surface with a qPlus sensor
,”
Nanotechnology
16
,
S118
(
2005
).
90.
F. J.
Giessibl
,
C. P.
Lutz
, and
A.
Heinrich
, unpublished data using the traditional Eigler walker STM that was transformed to AFM by adding a qPlus sensor, recorded on June 22 2007.
91.
F. J.
Giessibl
, “
Higher-harmonic atomic force microscopy
,”
Surf. Interface Anal.
38
,
1696
(
2006
).
92.
F. J.
Giessibl
,
F.
Pielmeier
,
T.
Eguchi
,
T.
An
, and
Y.
Hasegawa
, “
Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators
,”
Phys. Rev. B
84
,
125409
(
2011
).
93.
M.
Granovskij
,
A.
Schrön
, and
F.
Bechstedt
, “
Magnetic exchange force microscopy from first principles: Application to the antiferromagnetic NiO(001) surface
,”
New J. Phys.
16
,
023020
(
2014
).
94.
L.
Gross
,
F.
Mohn
,
P.
Liljeroth
,
J.
Repp
,
F. J.
Giessibl
, and
G.
Meyer
, “
Measuring the charge state of an adatom with noncontact atomic force microscopy
,”
Science
324
,
1428
(
2009
).
95.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
P.
Liljeroth
, and
G.
Meyer
, “
The chemical structure of a molecule resolved by atomic force microscopy
,”
Science
325
,
1110
(
2009
).
96.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
G.
Meyer
,
R.
Ebel
,
W. M.
Abdel-Mageed
, and
M.
Jaspars
, “
Organic structure determination using atomic-resolution scanning probe microscopy
,”
Nat. Chem.
2
,
821
(
2010
).
97.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
B.
Schuler
,
A.
Criado
,
E.
Guitian
,
D.
Pena
,
A.
Gourdon
, and
G.
Meyer
, “
Bond-order discrimination by atomic force microscopy
,”
Science
337
,
1326
(
2012
).
98.
L.
Gross
,
B.
Schuler
,
N.
Pavlicek
,
S.
Fatayer
,
Z.
Majzik
,
N.
Moll
,
D.
Pena
, and
G.
Meyer
, “
Atomic force microscopy for molecular structure elucidation
,”
Angew. Chem., Int. Ed.
57
,
3888
(
2018
).
99.
P.
Güthner
,
U.
Fischer
, and
K.
Dransfeld
, “
Scanning near-field acoustic microscopy
,”
Appl. Phys. B: Photophys. Laser Chem.
48
,
89
(
1989
).
100.
U.
Gysin
,
S.
Rast
,
P.
Ruff
,
E.
Meyer
,
D. W.
Lee
,
P.
Vettiger
, and
C.
Gerber
, “
Temperature dependence of the force sensitivity of silicon cantilevers
,”
Phys. Rev. B
69
,
045403
(
2004
).
101.
S. K.
Hämäläinen
,
N.
van der Heijden
,
J.
van der Lit
,
S.
den Hartog
,
P.
Liljeroth
, and
I.
Swart
, “
Intermolecular contrast in atomic force microscopy images without intermolecular bonds
,”
Phys. Rev. Lett.
113
,
186102
(
2014
).
102.
K. O.
Hanssen
,
B.
Schuler
,
A.
Williams
,
T. B.
Demissie
,
E.
Hansen
,
J. H.
Andersen
,
J.
Svenson
,
K.
Blinov
,
M.
Repisky
,
F.
Mohn
,
G.
Meyer
,
J.-S.
Svendsen
,
R.
Ruud
,
M.
Elyashberg
,
L.
Gross
,
M.
Jaspars
, and
J.
Isaksson
, “
A combined atomic force microscopy and computational approach for structural elucidation of breitfussin A and B, highly modified halogenated dipeptides from the arctic hydrozoan Thuiaria breitfussi
,”
Angew. Chem., Int. Ed.
51
,
12238
(
2012
).
103.
P.
Hapala
,
G.
Kichin
,
C.
Wagner
,
F.
Stefan Tautz
,
R.
Temirov
, and
P.
Jelinek
, “
Mechanism of high-resolution STM/AFM imaging with functionalized tips
,”
Phys. Rev. B
90
,
085421
(
2014
).
104.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
105.
Y.
Hasegawa
,
T.
Eguchi
,
T.
An
,
M.
Ono
,
K.
Akiyama
, and
T.
Sakurai
, “
Calculation of noise intensity in the frequency demodulation for atomic force microscopy
,”
Jpn. J. Appl. Phys., Part 2
43
,
L303
(
2004
).
106.
N.
Hauptmann
,
M.
Dupe
,
T. C.
Hung
,
A. K.
Lemmens
,
D.
Wegner
,
B.
Dupe
, and
A. A.
Khajetoorians
, “
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
,”
Phys. Rev. B
97
,
100401
(
2018
).
107.
Y.
He
,
M.
Garnica
,
F.
Bischoff
,
J.
Ducke
,
M.-L.
Bocquet
,
M.
Batzill
,
W.
Auwärter
, and
J. V.
Barth
, “
Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling
,”
Nat. Chem.
9
,
33
(
2016
).
108.
J.
Augustin Hedberg
, “
Low temperature force microscopy on a deeply embedded two dimensional electron gas
,” Ph.D. thesis,
McGill University
,
Montréal, Québec, Canada
,
2011
, https://drive.google.com/file/d/0B-21Su5F0W9UN2l4ZE10ZGM4S1VnNDJMQzBLREJLSDNYT0hj/view.
109.
J.
Hellerstedt
,
A.
Cahlík
,
Š.
Martin
,
B.
de la Torre
,
M.
Moro-Lagares
,
T.
Chutora
,
B.
Papoušková
,
G.
Zoppellaro
,
P.
Mutombo
,
M.
Ruben
,
R.
Zbořilb
, and
P.
Jelinek
, “
On-surface structural and electronic properties of spontaneously formed Tb2Pc3 single molecule magnets
,”
Nanoscale
10
,
15553
(
2018
).
110.
S.
Hembacher
,
F. J.
Giessibl
, and
J.
Mannhart
, “
Evaluation of a force sensor based on a quartz tuning fork for operation at low temperatures and ultrahigh vacuum
,”
Appl. Surf. Sci.
188
,
445
(
2002
).
111.
S.
Hembacher
,
F. J.
Giessibl
,
J.
Mannhart
, and
C. F.
Quate
, “
Revealing the hidden atom in graphite by low-temperature atomic force microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
12539
(
2003
).
112.
S.
Hembacher
,
F. J.
Giessibl
, and
J.
Mannhart
, “
Force microscopy with light-atom probes
,”
Science
305
,
380
(
2004
).
113.
S.
Hembacher
,
F. J.
Giessibl
,
J.
Mannhart
, and
C. F.
Quate
, “
Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite
,”
Phys. Rev. Lett.
94
,
056101
(
2005
).
114.
M.
Herz
,
F. J.
Giessibl
, and
J.
Mannhart
, “
Probing the shape of atoms in real space
,”
Phys. Rev. B
68
,
045301
(
2003
).
115.
M.
Herz
,
Ch.
Schiller
,
F. J.
Giessibl
, and
J.
Mannhart
, “
Simultaneous current-, force-, and work function measurement with atomic resolution
,”
Appl. Phys. Lett.
86
,
153101
(
2005
).
116.
J. E.
Hirsch
, “
Proposed experimental test of an alternative electrodynamic theory of superconductors
,”
Physica C
508
,
21
(
2015
).
117.
H.
Hölscher
,
S. M.
Langkat
,
A.
Schwarz
, and
R.
Wiesendanger
, “
Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy
,”
Appl. Phys. Lett.
81
,
4428
(
2002
).
118.
W. A.
Hofer
,
A. S.
Foster
, and
A. L.
Shluger
, “
Theories of scanning probe microscopes at the atomic scale
,”
Rev. Mod. Phys.
75
,
1287
(
2003
).
119.
T.
Hofmann
,
J.
Welker
, and
F. J.
Giessibl
, “
Preparation of light-atom tips for scanning probe microscopy by explosive delamination
,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
28
,
C4E28
(
2010
).
120.
T.
Hofmann
, “
Hochauflösende Rasterkraftmikroskopie auf Graphen und Kohlenmonoxid
,” Dissertationsreihe Physik,
Universität Regensburg
(
2014
), available at https://epubl-uni-regensburg.de/29735/1/hofmann.pdf.
121.
T.
Hofmann
,
F.
Pielmeier
, and
F. J.
Giessibl
, “
Chemical and crystallographic characterization of the tip apex in scanning probe microscopy
,”
Phys. Rev. Lett.
112
,
066101
(
2014
).
122.
I.
Horcas
,
R.
Fernández
,
J. M.
Gómez-Rodrígue
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A. M.
Baro
, “
WSXM: A software for scanning probe microscopy and a tool for nanotechnology
,”
Rev. Sci. Instrum.
78
,
013705
(
2007
).
123.
M.
Huang
,
M.
Čuma
, and
F.
Liu
, “
Seeing the atomic orbital: First-principles study of the effect of tip termination on atomic force microscopy
,”
Phys. Rev. Lett.
90
,
256101
(
2003
).
124.
F.
Huber
,
S.
Matencio
,
A. J.
Weymouth
,
C.
Ocal
,
E.
Barrena
, and
F. J.
Giessibl
, “
Intramolecular force contrast and dynamic current-distance measurements at room temperature
,”
Phys. Rev. Lett.
115
,
066101
(
2015
).
125.
F.
Huber
and
F. J.
Giessibl
, “
Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures
,”
Rev. Sci. Instrum.
88
,
073702
(
2017
).
126.
T.
Huff
,
H.
Labidi
,
M.
Rashidi
,
L.
Livadaru
,
T.
Dienel
,
R.
Achal
,
W.
Vine
,
J.
Pitters
, and
R. A.
Wolkow
, “
Binary atomic silicon logic
,”
Nat. Electron.
1
,
636
(
2018
).
127.
H. J.
Hug
,
M. A.
Lantz
,
A.
Abdurixit
,
P. J. A.
van Schendel
,
R.
Hoffmann
,
P.
Kappenberger
,
A.
Baratoff
, reply by
F. J.
Giessibl
,
S.
Hembacher
,
H.
Bielefeldt
, and
J.
Mannhart
, “
Subatomic features in atomic force microscopy images
,”
Science
291
,
2509
(
2001
).
128.
See https://hypertextbook.com/facts/2004/JennelleBaptiste.shtml for Resistivity of Gold, in The Physics Factbook.
129.
T.
Ichii
,
M.
Fujimura
,
M.
Negami
,
K.
Murase
, and
H.
Sugimura
, “
Frequency modulation atomic force microscopy in ionic liquid using quartz tuning fork sensors
,”
Jpn. J. Appl. Phys., Part 1
51
,
08KB08
(
2012
).
130.
W.
Isaacson
, “
Leonardo da Vinci
” (
Simon & Schuster
,
2017
).
131.
J.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Elsevier
,
Oxford
,
2011
).
132.
P. H.
Jacobse
,
A.
Komouche
,
T.
Gebraad
,
M. M.
Ervasti
,
J. M.
Thijssen
,
P.
Liljeroth
, and
I.
Swart
, “
Electronic components embedded in a single graphene nanoribbon
,”
Nat. Commun.
8
,
119
(
2017
).
133.
C. L.
Jahnke
,
O.
Brandt
,
K. E.
Fellows
, and
H. D.
Hallen
, “
Choosing a preamplifier for tuning fork signal detection in scanning force microscopy
,”
Rev. Sci. Instrum.
75
,
2759
(
2004
).
134.
S. P.
Jarvis
,
A. M.
Sweetman
,
I.
Lekkas
,
N. R.
Champness
,
L.
Kantorovich
, and
P.
Moriarty
, “
Simulated structure and imaging of NTCDI on Si(111)-7 × 7: A combined STM, NC-AFM and DFT study
,”
J. Phys.: Condens. Matter
27
,
054004
(
2015
).
135.
U.
Kaiser
,
A.
Schwarz
, and
R.
Wiesendanger
, “
Magnetic exchange force microscopy with atomic resolution
,”
Nature
446
,
522
(
2007
).
136.
K.
Karrai
and
R. D.
Grober
, “
Piezoelectric tip-sample distance control for near field optical microscopes
,”
Appl. Phys. Lett.
66
,
1842
(
1995
).
137.
K.
Karrai
and
I.
Tiemann
, “
Interfacial shear force microscopy
,”
Phys. Rev. B
62
,
13174
(
2000
).
138.
S.
Kawai
,
S.
Saito
,
S.
Osumi
,
S.
Yamaguchi
,
A. S.
Foster
,
P.
Spijker
, and
E.
Meyer
, “
Atomically controlled substitutional boron-doping of graphene nanoribbons
,”
Nat. Commun.
6
,
8098
(
2015
).
139.
S.
Kawai
,
A. S.
Foster
,
T.
Björkman
,
S.
Nowakowsaka
,
J.
Björk
,
F.
Federici Canova
,
L. H.
Gade
,
T. A.
Jung
, and
E.
Meyer
, “
Van der Waals interactions and the limits of isolated atom models at interfaces
,”
Nat. Commun.
7
,
11559
(
2016
).
140.
S.
Kawai
,
A.
Benassi
,
E.
Gnecco
,
H.
Söde
,
R.
Pawlak
,
K.
Mullen
,
D.
Passerone
,
C.
Pignedoli
,
P.
Ruffieux
,
R.
Fasel
, and
E.
Meyer
, “
Superlubricity of graphene nanoribbons on gold surfaces
,”
Science
351
,
957
(
2016
).
141.
S.
Kawai
,
T.
Nishiuchi
,
T.
Kodama
,
P.
Spijker
,
R.
Pawlak
,
T.
Meier
,
J.
Tracey
,
T.
Kubo
,
E.
Meyer
, and
A. S.
Foster
, “
Direct quantitative measurement of the C=O⋯H-C bond by atomic force microscopy
,”
Sci. Adv.
3
,
e1603258
(
2017
).
142.
S.
Kawai
,
S.
Nakatsuka
,
T.
Hatakeyama
,
R.
Pawlak
,
T.
Meier
,
J.
Tracey
,
E.
Meyer
, and
A. S.
Foster
, “
Multiple heteroatom substitution to graphene nanoribbon
,”
Sci. Adv.
4
,
eaar7181
(
2018
).
143.
B.
Kim
,
S.
Kwon
,
M.
Lee
,
Q. H.
Kim
,
S.
An
, and
W.
Jhe
, “
Probing nonlinear rheology layer-by-layer in interfacial hydration water
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15619
(
2015
).
144.
E.
Kleinbaum
and
G. A.
Csathy
,
Rev. Sci. Instrum.
83
,
126101
(
2012
).
145.
N.
Klimov
,
S.
Jung
,
S.
Zhu
,
T.
Li
,
C.
Wright
,
S.
Solares
,
D.
Newell
,
N.
Zhitenev
, and
J.
Stroscio
, “
Electromechanical properties of graphene drumheads
,”
Science
336
,
1557
(
2012
).
146.
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
, “
Frequency noise in frequency modulation atomic force microscopy
,”
Rev. Sci. Instrum.
80
,
043708
(
2009
).
147.
M.
Koch
,
Z.
Li
,
C.
Nacci
,
T.
Kumagai
,
I.
Franco
, and
L.
Grill
, “
How structural defects affect the mechanical and electrical properties of single molecular wires
,”
Phys. Rev. Lett.
121
,
047701
(
2018
).
148.

Kolibri-Preamp, SPECS GmbH, Berlin, Germany

149.
J.
Lambe
and
R. C.
Jaklevic
, “
Molecular vibration spectra by inelastic electron tunneling
,”
Phys. Rev.
165
,
821
(
1968
).
150.
M. A.
Lantz
,
H. J.
Hug
,
P. J. A.
van Schendel
,
R.
Hoffmann
,
S.
Martin
,
A.
Baratoff
,
A.
Abdurixit
,
H.-J.
Güntherodt
, and
Ch.
Gerber
, “
Low temperature scanning force microscopy of the Si(111)-(7 × 7) surface
,”
Phys. Rev. Lett.
84
,
2642
(
2000
).
151.
M. A.
Lantz
,
H. J.
Hug
,
R.
Hoffmann
,
P. J. A.
van Schendel
,
P.
Kappenberger
,
S.
Martin
,
A.
Baratoff
, and
H.-J.
Guütherodt
, “
Quantitative measurement of short-range chemical bonding forces
,”
Science
291
,
2580
(
2001
).
152.
K.
Lee
,
Q.
Kim
,
S.
An
,
J.
An
,
J.
Kim
,
B.
Kim
, and
W.
Jhe
, “
Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
5784
(
2014
).
153.
M.
Lee
,
B.
Kim
,
J.
Kim
, and
W.
Jhe
, “
Noncontact friction via capillary shear interaction at nanoscale
,”
Nat. Commun.
6
,
7359
(
2015
).
154.
P.
Leinen
,
M. F. B.
Green
,
T.
Esat
,
C.
Wagner
,
F.
Stefan Tautz
, and
R.
Temirov
, “
Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules
,”
Beilstein J. Nanotechnol.
6
,
2148
(
2015
).
155.
P.
Leinen
,
M. F. B.
Green
,
T.
Esat
,
C.
Wagner
,
F.
Stefan Tautz
, and
R.
Temirov
, “
Hand controlled manipulation of single molecules via a scanning probe microscope with a 3D virtual reality interface
,”
J. Visualized Exp.
116
,
e54506
(
2016
).
156.
N.
Li
,
X.
Chen
, and
Qi-K.
Xue
, “
Contribution of chemical bonding to the force in atomic force microscopy
,”
Acta Phys.-Chim. Sin.
30
,
205
(
2014
).
157.
A.
Liebig
,
A.
Peronio
,
D.
Meuer
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Atomic force microscopy with atomically-engineered tips provides up to 99.8% agreement between experiment and elementary electrostatics
” (unpublished).
158.
H.-Q.
Mao
,
X.
Chen
, and
Qi-K.
Xue
, “
Modulation of step heights of thin Pb films by the quantum size effect observed by non-contact atomic force microscopy
,”
Chin. Phys. Lett.
29
,
066802
(
2012
).
159.
G.
Meyer
and
N. M.
Amer
, “
Novel optical approach to atomic force microscopy
,”
Appl. Phys. Lett.
53
,
1045
(
1988
).
160.
G.
Meyer
and
N. M.
Amer
, “
Optical-beam-deflection atomic force microscopy: The NaCl (001) surface
,”
Appl. Phys. Lett.
56
,
2100
(
1990
).
161.
G.
Meyer
and
N. M.
Amer
, “
Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope
,”
Appl. Phys. Lett.
57
,
2089
(
1990
).
162.
J.
Melcher
,
J.
Stirling
, and
G. A.
Shaw
, “
A simple method for the determination of qPlus sensor spring constants
,”
Beilstein J. Nanotechnol.
6
,
1733
(
2015
).
163.

Microcrystal product brochure on quartz resonators, Micro Crystal AG, Mühlestrasse 14, CH-2540 Grenchen, Switzerland

164.
H.
Mönig
,
M.
Todorovic
,
M. Z.
Baykara
,
T. C.
Schwendemann
,
L.
Rodrigo
,
E. I.
Altman
,
R.
Perez
, and
U.
Schwarz
, “
Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: A case study
,”
ACS Nano
7
,
10233
(
2013
).
165.
H.
Mönig
,
S.
Amirjalayer
,
A.
Timmer
,
Z.
Hu
,
L.
Liu
,
O.
Diaz Arado
,
M.
Cnudde
,
C.
Alejandro Strassert
,
W.
Ji
,
M.
Rohlfing
, and
H.
Fuchs
, “
Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips
,”
Nat. Nanotechnol.
13
,
371
(
2018
).
166.
F.
Mohn
,
B.
Schuler
,
L.
Gross
, and
G.
Meyer
, “
Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules
,”
Appl. Phys. Lett.
102
,
073109
(
2013
).
167.
Noncontact Atomic Force Microscopy
, edited by
S.
Morita
,
R.
Wiesendanger
, and
E.
Meyer
(
Springer
,
New York
,
2002
).
168.
Noncontact Atomic Force Microscopy: Volume 2
, edited by
S.
Morita
,
F. J.
Giessibl
, and
R.
Wiesendanger
(
Springer
,
New York
,
2009
).
169.
Noncontact Atomic Force Microscopy: Volume 3
, edited by
S.
Morita
,
F. J.
Giessibl
,
E.
Meyer
, and
R.
Wiesendanger
(
Springer
,
New York
,
2015
).
170.
E.
Momosaki
and
Sh.
Kogure
, in
Piezoelectricity
, edited by
G. W.
Taylor
,
J. J.
Gagnepain
,
T. R.
Meeker
,
T.
Nakamura
, and
L. A.
Shuvalov
(
Gordon and Breach
,
New York
,
1985
), pp.
47
60
.
171.
G.
Münnich
,
A.
Donarini
,
M.
Wenderoth
, and
J.
Repp
, “
Fixing the energy scale in scanning tunneling microscopy on semiconductor surfaces
,”
Phys. Rev. Lett.
111
,
216802
(
2013
).
172.
K.
Mukasa
,
H.
Hasegawa
,
Y.
Tazuke
,
K.
Sueoka
,
M.
Sasaki
, and
K.
Hayakawa
, “
Exchange interaction between magnetic moments of ferromagnetic sample and tip: Possibility of atomic-resolution images of exchange interactions using exchange force microscopy
,”
Jpn. J. Appl. Phys., Part 1
33
,
2692
(
1994
).
173.

Nanonis—SPECS Zurich GmbH, 8005 Zurich, Switzerland

174.
M.
Neu
,
N.
Moll
,
L.
Gross
,
G.
Meyer
,
F. J.
Giessibl
, and
J.
Repp
, “
Image correction for atomic force microscopy images with functionalized tips
,”
Phys. Rev. B
89
,
205407
(
2014
).
175.

New England Wire Technologies, 130 North Main Street, Lisbon, NH 03585, USA

176.
K.
Hvidtfelt Nielsen
, “
Nanotech, blur and tragedy in recent artworks by Gerhard Richter
,”
Leonardo
41
,
484
(
2008
).
177.
See https://en.wikipedia.org/wiki/Not_invented_here for Not-invented-here syndrome.
178.
H.
Ooe
,
D.
Kirpal
,
D. S.
Wastl
,
A. J.
Weymouth
,
T.
Arai
, and
F. J.
Giessibl
, “
Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy
,”
Appl. Phys. Lett.
109
,
141603
(
2016
).
179.
F.
Ohnesorge
and
G.
Binnig
, “
True atomic resolution by atomic force microscopy through repulsive and attractive forces
,”
Science
260
,
1451
(
1993
).
180.
N.
Okabayashi
,
A.
Gustafsson
,
A.
Peronio
,
M.
Paulsson
,
T.
Arai
, and
F. J.
Giessibl
, “
Influence of atomic tip structure on the intensity of inelastic tunneling spectroscopy data analyzed by combined scanning tunneling spectroscopy, force microscopy, and density functional theory
,”
Phys. Rev. B
93
,
165415
(
2016
).
181.
N.
Okabayashi
,
A.
Peronio
,
M.
Paulsson
,
T.
Arai
, and
F. J.
Giessibl
, “
Vibrations of a molecule in an external force field
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
4571
(
2018
).
182.
L.
Patera
,
X.
Liu
,
N.
Mosso
,
S.
Decurtins
,
S. X.
Liu
, and
J.
Repp
, “
Crystallization of a two-dimensional hydrogen-bonded molecular assembly: Evolution of the local structure resolved by atomic force microscopy
,”
Angew. Chem., Int. Ed.
56
,
10786
(
2017
).
183.
N.
Pavliček
,
B.
Fleury
,
M.
Neu
,
J.
Niedenführ
,
C.
Herranz-Lancho
,
M.
Ruben
, and
J.
Repp
, “
Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway
,”
Phys. Rev. Lett.
108
,
086101
(
2012
).
184.
N.
Pavliček
and
L.
Gross
, “
Generation, manipulation and characterization of molecules by atomic force microscopy
,”
Nat. Rev. Chem.
1
,
0005
(
2017
).
185.
J.
Peng
,
J.
Guo
,
P.
Hapala
,
D.
Cao
,
R.
Ma
,
B.
Cheng
,
L.
Xu
,
O.
Martin
,
P.
Jelinek
,
E.
Wang
, and
Y.
Jiang
, “
Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy
,”
Nat. Commun.
9
,
122
(
2018
).
186.
J.
Peng
,
D.
Cao
,
Z.
He
,
J.
Guo
,
P.
Hapala
,
R.
Ma
,
B.
Cheng
,
J.
Chen
,
W. J.
Xie
,
X.-Z.
Li
,
P.
Jelinek
,
L.-M.
Xu
,
Y. Q.
Gao
,
E.-G.
Wang
, and
Y.
Jiang
, “
The effect of hydration number on the interfacial transport of sodium ions
,”
Nature
557
,
701
(
2018
).
187.
R.
Perez
,
I.
Stich
,
M. C.
Payne
, and
K.
Terakura
, “
Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111)
,”
Phys. Rev. B
58
,
10835
(
1998
).
188.
A.
Peronio
and
F. J.
Giessibl
, “
Attempts to test an alternative electrodynamic theory of superconductors by low-temperature scanning tunneling and atomic force microscopy
,”
Phys. Rev. B
94
,
094503
(
2016
).
189.
T.
Peters
and
R. H.
Waterman
,
Search of Excellence
(
Oxford University Press
,
New York, Oxford
,
1982
).
190.
F.
Pielmeier
and
F. J.
Giessibl
, “
Spin resolution and evidence for superexchange on NiO(001) observed by force microscopy
,”
Phys. Rev. Lett.
110
,
266101
(
2013
).
191.
F.
Pielmeier
,
D.
Meuer
,
D.
Schmid
,
C.
Strunk
, and
F. J.
Giessibl
, “
Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures
,”
Beilstein J. Nanotechnol.
5
,
407
412
(
2014
).
192.
F.
Pielmeier
,
G.
Landolt
,
B.
Slomski
,
S.
Muff
,
J.
Berwanger
,
A.
Eich
,
A. A.
Khajetoorians
,
J.
Wiebe
,
Z. S.
Aliev
,
M. B.
Babanly
,
R.
Wiesendanger
,
J.
Osterwalder
,
E. V.
Chulkov
,
F. J.
Giessibl
, and
J. H.
Dil
, “
Response of the topological surface state to surface disorder in TlBiSe2
,”
New J. Phys.
17
,
023067
(
2015
).
193.
F.
Pielmeier
and
F. J.
Giessibl
, “
Dissipation on T1BiSe2
” (unpublished).
194.
L.
Prandtl
, “
Ein gedankenmodell zur kinetischen theorie der festen körper
,”
J. Appl. Math. Mech.
8
,
85
(
1928
).
195.
K.
Pürckhauer
,
A. J.
Weymouth
,
K.
Pfeffer
,
L.
Kullmann
,
E.
Mulvihill
,
M. P.
Krahn
,
D. J.
Müller
, and
F. J.
Giessibl
, “
Imaging in biologically-relevant environments with AFM using stiff qPlus sensors
,”
Sci. Rep.
8
,
9330
(
2018
).
196.
M.
Rashidi
,
W.
Vine
,
T.
Dienel
,
L.
Livadaru
,
J.
Retallick
,
T.
Huff
,
K.
Walus
, and
R. A.
Wolkow
, “
Initiating and monitoring the evolution of single electrons within atom-defined structures
,”
Phys. Rev. Lett.
121
,
166801
(
2018
).
197.
J.
Repp
,
G.
Meyer
,
F.
Olsson
, and
M.
Persson
, “
Controlling the charge state of individual gold atoms
,”
Science
305
,
493
(
2004
).
198.
M.
Reticcioli
,
M.
Setvín
,
X.
Hao
,
P.
Flauger
,
G.
Kresse
,
M.
Schmid
 et al., “
Polaron-driven surface reconstructions
,”
Phys. Rev. X
7
,
031053
(
2017
).
199.
E.
Blick
, Website of Gerhard Richter https://www.gerhard-richter.com/en/art/editions/first-view-12800,
2000
.
200.
See https://www.gerhard-richter.com/en/art/editions/graphite-14153 for Graphit at website of Gerhard Richter,
2005
.
201.
A.
Riss
,
S.
Wickenburg
,
P.
Gorman
,
L. Z.
Tan
,
H.-Z.
Tsai
,
D. G.
de Oteyza
,
Y.-C.
Chen
,
A. J.
Bradley
,
M. M.
Ugeda
,
G.
Etkin
,
S. G.
Louie
,
F. R.
Fischer
, and
M. F.
Crommie
, “
Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface
,”
Nano Lett.
14
,
2251
(
2014
).
202.
P.
Ruffieux
,
S.
Wang
,
B.
Yang
,
C.
Sánchez-Sánchez
,
J.
Liu
,
T.
Dienel
,
L.
Talirz
,
P.
Shinde
,
C. A.
Pignedoli
,
D.
Passerone
,
T.
Dumslaff
,
X.
Feng
,
K.
Müllen
, and
R.
Fasel
, “
On-surface synthesis of graphene nanoribbons with zigzag edge topology
,”
Nature
531
,
489
(
2016
).
203.
D.
Rugar
and
P.
Hansma
, “
Atomic force microscopy
,”
Phys. Today
43
(
10
),
23
(
1990
).
204.
J.
Rychen
,
Combined Low-Temperature Scanning Probe Microscopy and Magneto-Transport Experiments for the Local Investigation of Mesoscopic Systems
, Diss. ETH No. 14229 (
Swiss Federal Institute of Technology
,
Zurich, CH
,
2001
).
205.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Muvaney
, “
Calibration of rectangular atomic force microscope cantilevers
,”
Rev. Sci. Instrum.
70
,
3967
(
1999
).
206.
J. E.
Sader
and
S.
Jarvis
, “
Accurate formulas for interaction force and energy in frequency modulation force spectroscopy
,”
Appl. Phys. Lett.
84
,
1801
(
2004
).
207.
J. E.
Sader
,
B. D.
Hughes
,
F.
Huber
, and
F. J.
Giessibl
, “
Interatomic force laws that corrupt their own measurement
,” e-print arXiv:1709.07571 [cond-mat.mes-hall].
208.
J. E.
Sader
,
B. D.
Hughes
,
F.
Huber
, and
F. J.
Giessibl
, “
Interatomic force laws that evade dynamic measurement
,”
Nat. Nanotechnol.
13
,
1088
(
2018
).
209.
A.
Schirmeisen
,
G.
Cross
,
A.
Stalder
,
P.
Grütter
, and
U.
Dürig
, “
Metallic adhesion and tunnelling at the atomic scale
,”
New J. Phys.
2
,
29
(
2000
).
210.
M.
Schneiderbauer
,
D.
Wastl
, and
F. J.
Giessibl
, “
qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution
,”
Beilstein J. Nanotechnol.
3
,
174
(
2012
).
211.
M.
Schneiderbauer
,
M.
Emmrich
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces
,”
Phys. Rev. Lett.
112
,
166102
(
2014
).
212.
M.
Schmid
,
J.
Mannhart
, and
F. J.
Giessibl
, “
Searching atomic spin contrast on nickel oxide (001) by force microscopy
,”
Phys. Rev. B
77
,
045402
(
2008
).
213.
B.
Schuler
,
W.
Liu
,
A.
Tkatchenko
,
N.
Moll
,
G.
Meyer
,
A.
Mistry
,
D.
Fox
, and
L.
Gross
, “
Adsorption geometry determination of single molecules by atomic force microscopy
,”
Phys. Rev. Lett.
111
,
106103
(
2013
).
214.
B.
Schuler
,
S.
Fatayer
,
F.
Mohn
,
N.
Moll
,
N.
Pavliček
,
G.
Meyer
,
D.
Pena
, and
L.
Gross
, “
Reversible Bergman cyclization by atomic manipulation
,”
Nat. Chem.
8
,
220
(
2016
).
215.
B.
Schuler
,
S.
Fatayer
,
G.
Meyer
,
E.
Rogel
,
M.
Moir
,
Y.
Zhang
,
M. R.
Harper
,
A. E.
Pomerantz
,
K. D.
Bake
,
M.
Witt
,
D.
Pera
,
J.
Douglas Kushnerick
,
O. C.
Mullins
,
C.
Ovalles
,
F. G. A.
van den Berg
, and
L.
Gross
, “
Heavy oil based mixtures of different origins and treatments studied by AFM
,”
Energy Fuels
31
,
6856
(
2017
).
216.
M.
Schwarz
,
A.
Riss
,
M.
Garnica
,
J.
Ducke
,
P. S.
Deimel
,
D. A.
Duncan
,
P. K.
Thakur
,
T. L.
Lee
,
A. P.
Seitsonen
,
J. V.
Barth
,
F.
Allegretti
, and
W.
Auwarter
, “
Corrugation in the weakly interacting hexagonal-BN/Cu(111) system: Structure determination by combining noncontact atomic force microscopy and x-ray standing waves
,”
ACS Nano
11
,
9151
(
2017
).
217.
J.
Schwenk
,
S.
Kim
,
J.
Berwanger
,
S.
Blankenship
,
W.
Cullen
,
Y.
Kuk
,
F.
Giessibl
, and
J.
Stroscio
, “
A combined atomic force- and tunneling microscopy system at 10 mK temperature
,” in
presentation E01.00009 at APS March Meeting
,
Los Angeles
,
2018
.
218.
M.
Setvín
,
C.
Franchini
,
X.
Hao
,
M.
Schmid
,
A.
Janotti
,
M.
Kaltak
 et al., “
Direct view at excess electrons in TiO2 rutile and anatase
,”
Phys. Rev. Lett.
113
,
086402
(
2014
).
219.
M.
Setvin
,
M.
Wagner
,
M.
Schmid
,
G. S.
Parkinson
, and
U.
Diebold
, “
Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy
,”
Chem. Soc. Rev.
46
,
1772
(
2017
).
220.
M.
Setvin
,
J.
Hulva
,
G. S.
Parkinson
,
M.
Schmid
, and
U.
Diebold
, “
Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
1073
,
E2556
(
2017
).
221.
M.
Setvin
,
M.
Reticcioli
,
F.
Pölzleitner
,
J.
Hulva
,
M.
Schmid
,
L. A.
Boatner
,
C.
Franchini
, and
U.
Diebold
, “
Polarity compensation mechanisms on the perovskite surface KTaO3(001)
,”
Science
359
,
572
(
2018
).
222.
M.
Shekhirev
,
P.
Zahl
, and
A.
Sinitskii
, “
Phenyl functionalization of atomically precise graphene nanoribbons for engineering inter-ribbon interactions and graphene nanopores
,”
ACS Nano
12
,
8662
(
2018
).
223.
A.
Shiotari
and
Y.
Sugimoto
, “
Ultrahigh-resolution imaging of water networks by atomic force microscopy
,”
Nat. Commun.
8
,
14313
(
2017
).
224.
D.
Sobel
,
Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time
(
Walker & Company
,
1995
).
225.
Y. J.
Song
,
A. F.
Otte
,
V.
Shvarts
,
Z.
Zhao
,
Y.
Kuk
,
S. R.
Blankenship
,
A.
Band
,
F. M.
Hess
, and
J. A.
Stroscio
, “
Invited review article: A 10 mK scanning probe microscopy facility
,”
Rev. Sci. Instrum.
81
,
121101
(
2010
).
226.
Y. J.
Song
,
A. F.
Otte
,
Y.
Kuk
,
Y.
Hu
,
D. B.
Torrance
,
P. N.
First
,
W. A.
de Heer
,
H.
Min
,
S.
Adam
,
M. D.
Stiles
,
A. H.
MacDonald
, and
J. A.
Stroscio
, “
High-resolution tunnelling spectroscopy of a graphene quartet
,”
Nature
467
,
185
(
2010
).
227.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
, “
Single molecule vibrational spectroscopy and microscopy
,”
Science
280
,
1732
(
1998
).
228.
Y.
Sugimoto
,
P.
Pou
,
S.
Hirayama
,
N.
Oyabu
,
O.
Custance
, and
S.
Morita
, “
Atom inlays performed at room temperature using atomic force microscopy
,”
Nat. Mater.
4
,
156
(
2005
).
229.
Y.
Sugimoto
,
P.
Pou
,
M.
Abe
,
P.
Jelinek
,
R.
Perez
,
S.
Morita
, and
O.
Custance
, “
Chemical identification of individual surface atoms by atomic force microscopy
,”
Nature
446
,
64
(
2007
).
230.
Z.
Sun
,
M. P.
Boneschanscher
,
I.
Swart
,
D.
Vanmaekelbergh
, and
P.
Liljeroth
, “
Quantitative atomic force microscopy with carbon monoxide terminated tips
,”
Phys. Rev. Lett.
106
,
046104
(
2011
).
231.
I.
Swart
, personal communication (
2014
).
232.
A.
Sweetman
,
S.
Jarvis
,
R.
Danza
,
J.
Bamidele
,
S.
Gangopadhyay
,
G. A.
Shaw
,
L.
Kantorovich
, and
P.
Moriarty
, “
Toggling bistable atoms via mechanical switching of bond angle
,”
Phys. Rev. Lett.
106
,
136101
(
2011
).
233.
A.
Sweetman
,
S.
Jarvis
,
R.
Danza
, and
P.
Moriarty
, “
Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe
,”
Beilstein J. Nanotechnol.
3
,
25
(
2012
).
234.
A.
Sweetman
,
M. A.
Rashid
,
S. P.
Jarvis
,
J.
Dunn
,
P.
Rahe
, and
P.
Moriarty
, “
Visualizing the orientational dependence of an intermolecular potential
,”
Nat. Commun.
7
,
1
(
2016
).
235.
R.
Temirov
,
S.
Soubatch
,
O.
Neucheva
,
A.
Lassise
, and
F. S.
Tautz
, “
A novel method achieving ultra-high geometrical resolution in scanning tunnelling microcopy
,”
New J. Phys.
10
,
053012
(
2008
).
236.
R.
Temirov
,
A.
Lassise
,
F. B.
Anders
, and
F. S.
Tautz
, “
Kondo effect by controlled cleavage of a single-molecule contact
,”
Nanotechnology
19
,
065401
(
2008
).
237.
R.
Temirov
,
M. F. B.
Green
,
N.
Friedrich
,
P.
Leinen
,
T.
Esat
,
P.
Chmielniak
,
S.
Sarwar
,
J.
Rawson
,
P.
Kögerler
,
C.
Wagner
,
M.
Rohlfing
, and
F.
Stefan Tautz
, “
Molecular model of a quantum dot beyond the constant interaction approximation
,”
Phys. Rev. Lett.
120
,
206801
(
2018
).
238.
M.
Ternes
,
C.
Gonzalez
,
C. P.
Lutz
,
P.
Hapala
,
F. J.
Giessibl
,
P.
Jelinek
, and
A.
Heinrich
, “
Interplay of conductance, force, and structural change in metallic point contacts
,”
Phys. Rev. Lett.
106
,
016802
(
2011
).
239.
M.
Ternes
,
C.
Lutz
,
C. F.
Hirjibehedin
,
F. J.
Giessibl
, and
A.
Heinrich
, “
The force needed to move an atom on a surface
,”
Science
319
,
1066
(
2008
).
240.
G. A.
Tomlinson
, “
A molecular theory of friction
,”
Philos. Mag.
7
,
905
(
1929
).
241.
M.
Tortonese
,
R. C.
Barrett
, and
C. F.
Quate
, “
Atomic resolution with an atomic force microscope using piezoresistive detection
,”
Appl. Phys. Lett.
62
,
834
(
1993
).
242.
S.
Torbrügge
,
O.
Schaff
, and
J.
Rychen
, “
Application of the KolibriSensor to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging
,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
28
,
C4E12
(
2010
).
243.
R. C.
Tung
,
T.
Wutscher
,
D.
Martinez-Martin
, and
R. G.
Reifenberger
,
F.
Giessibl
, and
A.
Raman
, “
Higher-order eigenmodes of qPlus sensors for high resolution dynamic atomic force microscopy
,”
J. Appl. Phys.
107
,
104508
(
2010
).
244.
J.
van der Lit
,
M. P.
Boneschanscher
,
D.
Vanmaekelbergh
,
M.
Ijas
,
A.
Uppstu
,
M.
Ervasti
,
A.
Harju
,
P.
Liljeroth
, and
I.
Swart
, “
Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom
,”
Nat. Commun.
4
,
2023
(
2013
).
245.
C. M.
Van Vliet
, “
Random walk and 1/f noise
,”
Physica A
303
,
421
(
2001
).
246.
R. W.
Ward
, “
Constants of alpha quartz
,” in
Piezoelectricity
, edited by
C.
Zwick Rosen
,
B. V.
Hiremath
, and
R.
Newnham
(
American Institute of Physics
,
New York
,
1992
), pp.
211
220
.
247.
C.
Wagner
,
N.
Fournier
,
F. S.
Tautz
, and
R.
Temirov
, “
Measurement of the binding energies of the organic-metal perylene-teracarboxylic-dianhydride/Au(111) bonds by molecular manipulation using an atomic force microscope
,”
Phys. Rev. Lett.
109
,
076102
(
2012
).
248.
C.
Wagner
,
N.
Fournier
,
F. S.
Tautz
, and
R.
Temirov
, “
The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope
,”
Beilstein J. Nanotechnol.
5
,
202
(
2014
).
249.
C.
Wagner
,
N.
Fournier
,
V. G.
Ruiz
,
C.
Li
,
K.
Müllen
,
M.
Rohlfing
,
A.
Tkatchenko
,
R.
Temirov
, and
F.
Stefan Tautz
, “
Non-additivity of molecule-surface van der Waals potentials from force measurements
,”
Nat. Commun.
5
,
5568
(
2014
).
250.
C.
Wagner
,
M. F. B.
Green
,
P.
Leinen
,
T.
Deilmann
,
P.
Krüger
,
M.
Rohlfing
,
R.
Temirov
, and
F.
Stefan Tautz
, “
Scanning quantum dot microscopy
,”
Phys. Rev. Lett.
115
,
026101
(
2015
).
251.
X.-Y.
Wang
,
M.
Richter
,
Y.
He
,
J.
Björk
,
A.
Riss
,
R.
Rajesh
,
M.
Garnica
,
F.
Hennersdorf
,
J. J.
Weigand
,
A.
Narita
,
R.
Berger
,
X.
Feng
,
W.
Auwärter
,
J. V.
Barth
,
C.-A.
Palma
, and
K.
Müllen
, “
Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling
,”
Nat. Commun.
8
,
1948
(
2017
).
252.
D.
Wastl
,
A.
Weymouth
, and
F. J.
Giessibl
, “
Optimizing atomic resolution of force microscopy in ambient conditions
,”
Phys. Rev. B
87
,
245415
(
2013
).
253.
D.
Wastl
,
A.
Weymouth
, and
F. J.
Giessibl
, “
Atomically resolved graphitic surfaces in air by atomic force microscopy
,”
ACS Nano
8
,
5233
(
2014
).
254.
D.
Wastl
,
M.
Judmann
,
A.
Weymouth
, and
F. J.
Giessibl
, “
Atomic resolution of calcium and oxygen sublattices of calcite in ambient conditions by atomic force microscopy using qPlus sensors with sapphire tips
,”
ACS Nano
9
,
3858
(
2015
).
255.
J.
Welker
,
F.
de Faria Elsner
, and
F. J.
Giessibl
, “
Application of the equipartition theorem to the thermal excitation of quartz tuning forks
,”
Appl. Phys. Lett.
99
,
084102
(
2011
).
256.
J.
Welker
,
E.
Illek
, and
F. J.
Giessibl
, “
Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy
,”
Beilstein J. Nanotechnol.
3
,
238
(
2012
).
257.
J.
Welker
and
F. J.
Giessibl
, “
Revealing the angular symmetry of chemical bonds by atomic force microscopy
,”
Science
336
,
444
(
2012
).
258.
J.
Welker
,
A.
John Weymouth
, and
F. J.
Giessibl
, “
The influence of chemical bonding configuration on atomic identification by force spectroscopy
,”
ACS Nano
7
,
7377
(
2013
).
259.
A. J.
Weymouth
,
T.
Wutscher
,
J.
Welker
,
T.
Hofmann
, and
F. J.
Giessibl
, “
Phantom force induced by tunneling current: A characterization on Si(111)
,”
Phys. Rev. Lett.
106
,
226801
(
2011
).
260.
A. J.
Weymouth
,
D.
Meuer
,
P.
Mutombo
,
T.
Wutscher
,
M.
Ondracek
,
P.
Jelinek
, and
F. J.
Giessibl
, “
Atomic structure affects the directional dependence of friction
,”
Phys. Rev. Lett.
111
,
126103
(
2013
).
261.
A. J.
Weymouth
,
T.
Hofmann
, and
F. J.
Giessibl
, “
Quantifying molecular stiffness and interaction with lateral force microscopy
,”
Science
343
,
1120
(
2013
).
262.
A. J.
Weymouth
, “
Non contact lateral force microscopy
,”
J. Phys.: Condens. Matter
29
,
323001
(
2017
).
263.
A. J.
Weymouth
, personal communication (
2018
).
264.
S.
Wickenburg
,
J.
Lu
,
J.
Lischner
,
H.-Z.
Tsai
,
A. A.
Omrani
,
A.
Riss
,
C.
Karrasch
,
A.
Bradley
,
H. S.
Jung
,
R.
Khajeh
,
D.
Wong
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Zettl
,
A. H.
Castro Neto
,
S. G.
Louie
, and
M. F.
Crommie
, “
Tuning charge and correlation effects for a single molecule on a graphene device
,”
Nat. Commun.
7
,
13553
(
2016
).
265.
See https://en.wikipedia.org/wiki/Redefinition_of_SI_base_units for Wikipedia article on the redefinition of SI base units.
266.
C.
Alan Wright
and
S. D.
Solares
, “
On mapping subangstrom electron clouds with force microscopy
,”
Nano Lett.
11
,
5026
(
2011
).
267.
E.
Wutscher
and
F. J.
Giessibl
, “
Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes
,”
Rev. Sci. Instrum.
82
,
093703
(
2011
).
268.
T.
Wutscher
and
F. J.
Giessibl
, “
Note: In situ cleavage of crystallographic oriented tips for scanning probe microscopy
,”
Rev. Sci. Instrum.
82
,
026106
(
2011
).
269.
J.
Zhang
,
P.
Chen
,
B.
Yuan
,
W.
Ji
,
Z.
Cheng
, and
X.
Qiu
, “
Real-space identification of intermolecular bonding with atomic force microscopy
,”
Science
342
,
611
(
2013
).
270.
L. A.
Zotti
,
W. A.
Hofer
, and
F. J.
Giessibl
, “
Electron scattering in scanning probe microscopy experiments
,”
Chem. Phys. Lett.
420
,
177
(
2006
).
271.
S.
Polesya
,
S.
Mankovsky
, and
H.
Ebert
, “
DFT calculations of AFM images of metallic adatoms
” (unpublished).
272.
S.
Yamazaki
,
K.
Maeda
,
Y.
Sugimoto
,
M.
Abe
,
V.
Zobač
,
P.
Pou
,
L.
Rodrigo
,
P.
Mutombo
,
R.
Pérez
,
P.
Jelínek
, and
S.
Morita
, “
Interplay between switching driven by the tunneling current and atomic force of a bistable four-atom Si quantum dot
,”
Nano Lett.
15
(
7
),
4356
(
2015
).
273.
A.
Shiotari
,
T.
Odani
, and
Y.
Sugimoto
, “
Torque-induced change in configuration of a single NO molecule on Cu(110)
,”
Phys. Rev. Lett.
121
,
116101
(
2018
).
You do not currently have access to this content.