We present an apparatus to study inelastic H or D atom scattering from surfaces under ultra-high vacuum conditions. The apparatus provides high resolution information on scattering energy and angular distributions by combining a photolysis-based atom source with Rydberg atom tagging time-of-flight. Using hydrogen halides as precursors, H and D atom beams can be formed with energies from 500 meV up to 7 eV, with an energy spread of down to 2 meV and an intensity of up to 108 atoms per pulse. A six-axis manipulator holds the sample and allows variation of both polar and azimuthal incidence angles. Surface temperature can be varied from 45 K up to 1500 K. The apparatus’ energy resolution (E/ΔE) can be as high as 1000 and its angular resolution can be adjusted between 0.3° and 3°.

1.
G.
Benedek
and
J. P.
Toennies
, “
Helium atom scattering spectroscopy of surface phonons: Genesis and achievements
,”
Surf. Sci.
299
,
587
(
1994
).
2.
F.
Hofmann
and
J. P.
Toennies
, “
High-resolution helium atom time-of-flight spectroscopy of low-frequency vibrations of adsorbates
,”
Chem. Rev.
96
,
1307
(
1996
).
3.
J. E.
Hurst
,
L.
Wharton
,
K. C.
Janda
, and
D. J.
Auerbach
, “
Direct inelastic-scattering AR from PT(111)
,”
J. Chem. Phys.
78
,
1559
(
1983
).
4.
J. E.
Hurst
,
C. A.
Becker
,
J. P.
Cowin
,
K. C.
Janda
,
L.
Wharton
, and
D. J.
Auerbach
, “
Observation of direct inelastic-scattering in the presence of trapping-desorption scattering: Xe on PT(111)
,”
Phys. Rev. Lett.
43
,
1175
(
1979
).
5.
J. E.
Hurst
,
L.
Wharton
,
K. C.
Janda
, and
D. J.
Auerbach
, “
Trapping-desorption scattering of argon from Pt(111)
,”
J. Chem. Phys.
83
,
1376
(
1985
).
6.
J. K.
Norskov
and
B. I.
Lundqvist
, “
Correlation between sticking probability and adsorbate-induced electron structure
,”
Surf. Sci.
89
,
251
(
1979
).
7.
H.
Nienhaus
,
H. S.
Bergh
,
B.
Gergen
,
A.
Majumdar
,
W. H.
Weinberg
, and
E. W.
McFarland
, “
Electron-hole pair creation at Ag and Cu surfaces by adsorption of atomic hydrogen and deuterium
,”
Phys. Rev. Lett.
82
,
446
(
1999
).
8.
O.
Buenermann
,
H. Y.
Jiang
,
Y.
Dorenkamp
,
A.
Kandratsenka
,
S. M.
Janke
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption
,”
Science
350
,
1346
(
2015
).
9.
S. M.
Janke
,
D. J.
Auerbach
,
A. M.
Wodtke
, and
A.
Kandratsenka
, “
An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption
,”
J. Chem. Phys.
143
,
124708
(
2015
).
10.
H. U.
Finzel
,
H.
Frank
,
H.
Hoinkes
,
M.
Luschka
,
H.
Nahr
,
H.
Wilsch
, and
U.
Wonka
, “
Atom-surface scattering with velocity-selected H and D-atomic beams from LiF and NaF(001)
,”
Surf. Sci.
49
,
577
(
1975
).
11.
G.
Caracciolo
,
S.
Iannotta
,
G.
Scoles
, and
U.
Valbusa
, “
Diffractive scattering of H-atoms from the (001) surface of LiF at 78 K
,”
J. Chem. Phys.
72
,
4491
(
1980
).
12.
K.
Haberrec
,
E.
Mollwo
,
H.
Schreibe
,
H.
Hoinkes
,
H.
Nahr
,
P.
Lindner
, and
H.
Wilsch
,
The ZnO-crystal as sensitive and selective detector for atomic hydrogen beams
,
Nucl. Instrum. Methods
57
,
22
(
1967
).
13.
T. H.
Johnson
, “
Diffraction of hydrogen atoms
,”
Phys. Rev.
37
,
847
(
1931
).
14.
H.
Hoinkes
,
H.
Wilsch
, and
H.
Nahr
, “
Reflection, diffraction and selective adsorption of atomic-hydrogen on (001) surface of LiF
,”
Surf. Sci.
30
,
363
(
1972
).
15.
H.
Hoinkes
, “
The physical interaction potential of gas atoms with single-crystal surfaces, determined from gas-surface diffraction experiments
,”
Rev. Mod. Phys.
52
,
933
(
1980
).
16.
T. H.
Ellis
,
G.
Scoles
,
U.
Valbusa
,
H.
Jonsson
, and
J. H.
Weare
, “
Hydrogen-atom scattering from physisorbed overlayers: I. Diffraction
,”
Surf. Sci.
155
,
499
(
1985
).
17.
T.
Kinugawa
and
T.
Arikawa
, “
Diffractive scattering experiment of H-atoms using laser and ion imaging techniques
,”
Jpn. J. Appl. Phys. 2
32
,
L550
(
1993
).
18.
L.
Schnieder
,
W.
Meier
,
K. H.
Welge
,
M. N. R.
Ashfold
, and
C. M.
Western
, “
Photodissociation dynamics of H2S at 121.6 nm and a determination of the potential-energy function of SH(A2+)
,”
J. Chem. Phys.
92
,
7027
(
1990
).
19.
L.
Schnieder
,
K.
Seekamprahn
,
F.
Liedeker
,
H.
Steuwe
, and
K. H.
Welge
, “
Hydrogen-exchange reaction H + D2 in crossed beams
,”
Faraday Discuss.
91
,
259
(
1991
).
20.
M. H.
Qiu
,
L.
Che
,
Z. F.
Ren
,
D. X.
Dai
,
X. Y.
Wang
, and
X. M.
Yang
, “
High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions
,”
Rev. Sci. Instrum.
76
,
083107
(
2005
).
21.
K. J.
Yuan
,
L. N.
Cheng
,
Y.
Cheng
,
Q.
Guo
,
D. X.
Dai
, and
X. M.
Yang
, “
Tunable VUV photochemistry using Rydberg H-atom time-of-flight spectroscopy
,”
Rev. Sci. Instrum.
79
,
124101
(
2008
).
22.
S. R.
Langford
,
P. M.
Regan
,
A. J.
Orr-Ewing
, and
M. N. R.
Ashfold
, “
On the UV photodissociation dynamics of hydrogen iodide
,”
Chem. Phys.
231
,
245
(
1998
).
23.
P. M.
Regan
,
S. R.
Langford
,
A. J.
Orr-Ewing
, and
M. N. R.
Ashfold
, “
The ultraviolet photodissociation dynamics of hydrogen bromide
,”
J. Chem. Phys.
110
,
281
(
1999
).
24.
S.
Su
,
Y.
Dorenkamp
,
S.
Yu
,
A. M.
Wodtke
,
D.
Dai
,
K.
Yuan
, and
X.
Yang
, “
Vacuum ultraviolet photodissociation of hydrogen bromide
,”
Phys. Chem. Chem. Phys.
18
,
15399
(
2016
).
25.
J. P.
Marangos
,
N.
Shen
,
H.
Ma
,
M. H. R.
Hutchinson
, and
J. P.
Connerade
, “
Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum difference frequency mixing in krypton
,”
J. Opt. Soc. Am. B
7
,
1254
(
1990
).
26.
D. J.
Auerbach
,
C. A.
Becker
,
J. P.
Cowin
, and
L.
Wharton
, “
UHV application of spring-loaded Teflon seals
,”
Rev. Sci. Instrum.
49
,
1518
(
1978
).
27.
S. A.
Harich
,
D. W. H.
Hwang
,
X. F.
Yang
,
J. J.
Lin
,
X. M.
Yang
, and
R. N.
Dixon
, “
Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture
,”
J. Chem. Phys.
113
,
10073
(
2000
).
28.
M.
Michel
,
M. V.
Korolkov
, and
K. M.
Weitzel
, “
A new route to the dissociation energy of ionic and neutral HCl via lineshape analysis of single rotational transitions
,”
Phys. Chem. Chem. Phys.
4
,
4083
(
2002
).
29.
A.
Kandratsenka
,
H. Y.
Jiang
,
Y.
Dorenkamp
,
S. M.
Janke
,
M.
Kammler
,
A. M.
Wodtke
, and
O.
Buenermann
, “
Unified description of H-atom–induced chemicurrents and inelastic scattering
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
680
(
2018
).
30.
Y.
Dorenkamp
,
H. Y.
Jiang
,
H.
Kockert
,
N.
Hertl
,
M.
Kammler
,
S. M.
Janke
,
A.
Kandratsenka
,
A. M.
Wodtke
, and
O.
Buenermann
, “
Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption
,”
J. Chem. Phys.
148
,
034706
(
2018
).
31.
Y.
Dorenkamp
,
C.
Volkmann
,
V.
Roddatis
,
S.
Schneider
,
A. M.
Wodtke
, and
O.
Buenermann
, “
Inelastic H atom scattering from ultrathin aluminum oxide films grown by atomic layer deposition on Pt(111)
,”
J. Phys. Chem. C
122
,
10096
(
2018
).
32.
T. P.
Rakitzis
,
P. C.
Samartzis
,
R. L.
Toomes
,
T. N.
Kitsopoulos
,
A.
Brown
,
G. G.
Balint-Kurti
,
O. S.
Vasyutinskii
, and
J. A.
Beswick
, “
Spin-polarized hydrogen atoms from molecular photodissociation
,”
Science
300
,
1936
(
2003
).
33.
D.
Sofikitis
,
L.
Rubio-Lago
,
L.
Bougas
,
A. J.
Alexander
, and
T. P.
Rakitzis
, “
Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: Comparison of H- and halogen-atom polarizations
,”
J. Chem. Phys.
129
,
144302
(
2008
).
34.
B. M.
Broderick
,
Y.
Lee
,
M. B.
Doyle
,
O. S.
Vasyutinskii
, and
A. G.
Suits
, “
Velocity distribution of hydrogen atom spin polarization
,”
J. Phys. Chem. Lett.
4
,
3489
3493
(
2013
).
35.
D.
Sofikitis
,
P.
Glodic
,
G.
Koumarianou
,
H. Y.
Jiang
,
L.
Bougas
,
P. C.
Samartzis
,
A.
Andreev
, and
T. P.
Rakitzis
, “
Highly nuclear-spin-polarized deuterium atoms from the UV photodissociation of deuterium iodide
,”
Phys. Rev. Lett.
118
,
233401
(
2017
).
36.
S.
Kaufmann
,
D.
Schwarzer
,
C.
Reichardt
,
A. M.
Wodtke
, and
O.
Buenermann
, “
Generation of ultra-short hydrogen atom pulses by bunch-compression photolysis
,”
Nat. Commun.
5
,
5373
(
2014
).
37.
D. J.
Harding
,
J.
Neugebohren
,
D. J.
Auerbach
,
T. N.
Kitsopoulos
, and
A. M.
Wodtke
, “
Using ion imaging to measure velocity distributions in surface scattering experiments
,”
J. Phys. Chem. A
119
,
12255
(
2015
).
You do not currently have access to this content.