Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of a few kHz around DC. Here, we develop, build, and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor. The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e., at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise ratios and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3 MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states.

1.
R.
de-Picciotto
 et al., “
Direct observation of a fractional charge
,”
Nature
389
,
162
(
1997
).
2.
L.
Saminadayar
,
D. C.
Glattli
,
Y.
Jin
, and
B.
Etienne
, “
Observation of the e/3 fractionally charged laughlin quasiparticle
,”
Phys. Rev. Lett.
79
,
2526
(
1997
).
3.
Y.
Ronen
 et al., “
Charge of a quasiparticle in a superconductor
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
1743
(
2016
).
4.
A.
Thielmann
,
M. H.
Hettler
,
J.
König
, and
G.
Schön
, “
Cotunneling current and shot noise in quantum dots
,”
Phys. Rev. Lett.
95
,
146806
(
2005
).
5.
E.
Onac
,
F.
Balestro
,
B.
Trauzettel
,
C. F. J.
Lodewijk
, and
L. P.
Kouwenhoven
, “
Shot-noise detection in a carbon nanotube quantum dot
,”
Phys. Rev. Lett.
96
,
026803
(
2006
).
6.
G.
Iannaccone
,
G.
Lombardi
,
M.
Macucci
, and
B.
Pellegrini
, “
Enhanced shot noise in resonant tunneling: Theory and experiment
,”
Phys. Rev. Lett.
80
,
1054
(
1998
).
7.
S.
Oberholzer
 et al., “
Shot noise by quantum scattering in chaotic cavities
,”
Phys. Rev. Lett.
86
,
2114
(
2001
).
8.
H.
van den Brom
and
J.
van Ruitenbeek
, “
Quantum suppression of shot noise in atom-size metallic contacts
,”
Phys. Rev. Lett.
82
,
1526
(
1999
).
9.
Y.
Blanter
and
M.
Büttiker
, “
Shot noise in mesoscopic conductors
,”
Phys. Rep.
336
,
1
(
2000
).
10.
Y. M.
Blanter
and
M.
Büttiker
, “
Transition from sub-Poissonian to super-Poissonian shot noise in resonant quantum wells
,”
Phys. Rev. B
59
,
10217
(
1999
).
11.
U.
Kemiktarak
,
T.
Ndukum
,
K. C.
Schwab
, and
K. L.
Ekinci
, “
Radio-frequency scanning tunnelling microscopy
,”
Nature
450
,
85
(
2007
).
12.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
, 2nd ed. (
Oxford University Press
,
2008
).
13.
H.
Birk
,
M. D.
Jong
, and
C.
Schönenberger
, “
Shot-noise suppression in the single-electron tunneling regime
,”
Phys. Rev. Lett.
75
,
1610
(
1995
).
14.
H.
Birk
,
K.
Oostveen
, and
C.
Schönenberger
, “
Preamplifier for electric-current noise measurements at low temperatures
,”
Rev. Sci. Instrum.
67
,
2977
(
1996
).
15.
M. J.
Rost
 et al., “
Scanning probe microscopes go video rate and beyond
,”
Rev. Sci. Instrum.
76
,
053710
(
2005
).
16.
H. J.
Mamin
,
H.
Birk
,
P.
Wimmer
, and
D.
Rugar
, “
High-speed scanning tunneling microscopy: Principles and applications
,”
J. Appl. Phys.
75
,
161
(
1994
).
17.
A.
Burtzlaff
,
A.
Weismann
,
M.
Brandbyge
, and
R.
Berndt
, “
Shot noise as a probe of spin-polarized transport through single atoms
,”
Phys. Rev. Lett.
114
,
016602
(
2015
).
18.
A.
Burtzlaff
,
N. L.
Schneider
,
A.
Weismann
, and
R.
Berndt
, “
Shot noise from single atom contacts in a scanning tunneling microscope
,”
Surf. Sci.
643
,
10
(
2016
).
19.
L.
DiCarlo
 et al., “
System for measuring auto- and cross correlation of current noise at low temperatures
,”
Rev. Sci. Instrum.
77
,
073906
(
2006
).
20.
T.
Arakawa
,
Y.
Nishihara
,
M.
Maeda
,
S.
Norimoto
, and
K.
Kobayashi
, “
Cryogenic amplifier for shot noise measurement at 20 mK
,”
Appl. Phys. Lett.
103
,
172104
(
2013
).
21.
M.
Hashisaka
 et al., “
Measurement for quantum shot noise in a quantum point contact at low temperatures
,”
J. Phys.: Conf. Ser.
109
,
012013
(
2008
).
22.
A. M.
Robinson
and
V. I.
Talyanskii
, “
Cryogenic amplifier for 1 MHz with a high input impedance using a commercial pseudomorphic high electron mobility transistor
,”
Rev. Sci. Instrum.
75
,
3169
(
2004
).
23.
Q.
Dong
 et al., “
Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics
,”
Appl. Phys. Lett.
105
,
013504
(
2014
).
24.
Y.
Jin
 et al., “
Ultra-low noise CryoHEMTs for cryogenic high-impedance readout electronics : Results and applications
,” in
ICSICT Conference Proceedings
,
2016
.
25.
E. W.
Carlson
,
K. A.
Dahmen
,
E.
Fradkin
, and
S. A.
Kivelson
, “
Hysteresis and noise from electronic nematicity in high-temperature superconductors
,”
Phys. Rev. Lett.
96
,
097003
(
2006
).
26.
S. A.
Kivelson
 et al., “
How to detect fluctuating order in the high-temperature superconductors
,”
Rev. Mod. Phys.
75
,
1201
(
2003
).
27.
J.
Figgins
and
D. K.
Morr
, “
Differential conductance and quantum interference in Kondo systems
,”
Phys. Rev. Lett.
104
,
187202
(
2010
).
28.
S.
Nadj-Perge
 et al., “
Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
,”
Science
346
,
602
(
2014
).
29.
A.
Golub
and
B.
Horovitz
, “
Shot noise in a Majorana fermion chain
,”
Phys. Rev. B
83
,
153415
(
2011
).
30.
S.
Loth
,
M.
Etzkorn
,
C. P.
Lutz
,
D. M.
Eigler
, and
A. J.
Heinrich
, “
Measurement of fast electron spin relaxation times with atomic resolution
,”
Science
329
,
1628
(
2010
).
31.
S.
Baumann
 et al., “
Electron paramagnetic resonance of individual atoms on a surface
,”
Science
350
,
417
(
2015
).
32.
M.
Leeuwenhoek
 et al., “
Nanofabricated tips as a platform for double-tip and device based scanning tunneling microscopy
,” e-print arXiv:1712.08620 (
2017
).
33.
H.
Grabert
, “
Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages
,”
Phys. Rev. B
92
,
245433
(
2015
).
34.
F.
Massee
 et al., “
Atomic scale shot-noise using broadband scanning tunnelling microscopy
,”
Rev. Sci. Instrum.
89
,
093708
(
2018
).
You do not currently have access to this content.