The study of samples subjected to high pressure gas is an important asset in materials research and has consequently been a priority of the sample environment development at the Oak Ridge National Laboratory’s (ORNL) neutron program. Such effort has resulted in the availability of an extensive combination of pressure cells and gas intensifiers (both commercially available and custom made). These resources are available across both neutron facilities at ORNL: the Spallation Neutron Source and the High Flux Isotope Reactor. Current capabilities include, for example, in situ measurements up to 6 kbar and a 3 kbar hydrogen-capable intensifier with a gas recovery feature. In this communication, we will review the existing suite of high pressure gas capabilities, with special emphasis on recent in-house developments. A number of examples will be presented to illustrate how such capabilities are being deployed on neutron beamlines to enable frontier science.

1.
R. M.
Brugger
, “
A proposal to investigate the physical properties of samples under very high pressures by time of flight neutron diffraction methods
,” Internal Report PTR 731,
National Reactor Testing Station
,
1964
.
2.
S.
Klotz
,
Techniques in High Pressure Neutron Scattering
(
CRC Press
,
Boca Raton, FL
,
2013
).
3.

This definition is in contrast with autogenous pressure generation, where the sample vessel is sealed and the pressure is varied via temperature change.

4.
See https://www.nist.gov/ncnr/sample-environment/equipment/highpressure for high pressure capabilities available at NCNR.
5.
R.
Lechner
,
Rev. Sci. Instrum.
37
(
11
),
1534
(
1966
).
6.
O.
Blaschko
and
G.
Ernst
,
Rev. Sci. Instrum.
45
(
4
),
526
(
1974
).
7.
J.
Pareau
and
C.
Vettier
,
Rev. Sci. Instrum.
46
(
11
),
1484
(
1975
).
8.
I. F.
Bailey
,
R.
Done
,
J. W.
Dreyeret
, and
E. M.
Gray
,
High Pressure Res.
24
(
2
),
309
(
2004
).
9.
W. F.
Kuhs
,
E.
Hensel
, and
H.
Bartels
,
J. Phys.: Condens. Matter
17
(
40
),
S3009
(
2005
).
10.
E. M.
Gray
,
R. I.
Smith
, and
M. P.
Pitt
,
J. Appl. Crystallogr.
40
(
3
),
399
(
2007
).
11.
N. P.
Butch
,
J. R.
Jeffries
,
S. X.
Chi
,
J. B.
Leao
,
J. W.
Lynn
, and
M. B.
Maple
,
Phys. Rev. B
82
(
6
),
060408
(
2010
).
12.
Y.
Yamada
,
J. D.
Jorgensen
,
S.
Pei
,
P.
Lightfoot
,
Y.
Kodama
,
T.
Matsumoto
, and
F.
Izumi
,
Physica C
173
(
3-4
),
185
(
1991
).
13.
S. M.
Hayden
,
L.
Taillefer
,
C.
Vettier
, and
J.
Flouquet
,
Phys. Rev. B
46
(
13
),
8675
(
1992
).
14.
M.
Widenmeyer
,
R.
Niewa
,
T. C.
Hansen
, and
H.
Kohlmann
,
Z. Anorg. Allg. Chem.
639
(
2
),
285
(
2013
).
15.
R. W.
Henning
,
A. J.
Schultz
,
V.
Thieu
, and
Y.
Halpern
,
J. Phys. Chem. A
104
(
21
),
5066
(
2000
).
16.
T. C.
Hansen
and
H.
Kohlmann
,
Z. Anorg. Allg. Chem.
640
(
15
),
3044
(
2014
).
17.
T.
Kandemir
,
F.
Girgsdies
,
T. C.
Hansen
,
K. D.
Liss
,
I.
Kasatkin
,
E. L.
Kunkes
,
G.
Wowsnick
,
N.
Jacobsen
,
R.
Schlogl
, and
M.
Behrens
,
Angew. Chem., Int. Ed.
52
(
19
),
5166
(
2013
).
18.
M.
Bououdina
,
J. L.
Soubeyroux
, and
D.
Fruchart
,
J. Alloys Compd.
327
(
1-2
),
185
(
2001
).
19.
E. M.
Gray
and
C. J.
Webb
,
Int. J. Hydrogen Energy
37
(
13
),
10182
(
2012
).
20.
A. D.
Fortes
,
I. G.
Wood
,
M.
Alfredsson
,
L.
Vocadlo
,
K. S.
Knight
,
W. G.
Marshall
,
M. G.
Tucker
, and
F.
Fernandez-Alonso
,
High Pressure Res.
27
(
2
),
201
(
2007
).
21.
22.
See https://www.isis.stfc.ac.uk/Pages/High-pressure-gas-cells.aspx for gas pressure devices available for in situ experiments at ISIS.
23.
D. Q.
Wang
,
X. L.
Wang
,
J. L.
Robertson
, and
C. R.
Hubbard
,
J. Appl. Crystallogr.
33
(
2
),
334
(
2000
).
24.
M. B.
Stone
,
D. H.
Siddel
,
A. M.
Elliott
 et al,
Rev. Sci. Instrum.
88
,
123102
(
2017
).
25.
C. J.
Ridley
,
P.
Manuel
,
D.
Khalyavin
 et al,
Rev. Sci. Instrum.
86
,
095114
(
2015
).
26.
See https://www.harwoodeng.com/ for Harwood Engineering, Massachusetts, USA.
27.
N.
Pradhan
and
J.
Carmichael
, private communication (
2013
).
28.
S. S.
Sidhu
,
L. R.
Heaton
,
D. D.
Zauberis
, and
F. P.
Campos
,
J. Appl. Phys.
27
(
9
),
1040
(
1956
).
29.
P. S.
Salmon
and
A. J.
Zeidler
,
J. Phys.: Condens. Matter
27
(
13
),
133201
(
2015
).
30.
See http://islandautomation.ca/ for island automation, Inc., Ontario, Canada.
31.
See https://www.haskel.com/products/gas-boosters/ for gas booster selection available from Haskel.
33.
C. A.
Tulk
,
J. J.
Molaison
,
A. M.
dos Santos
,
B.
Haberl
,
R.
Boehler
, and
M.
Guthrie
, “
The high-pressure diffractometer SNAP at the Spallation Neutron Source
” (unpublished).
34.
B. K.
Greve
,
K. L.
Martin
,
P. L.
Lee
,
P. J.
Chupas
,
K. W.
Chapman
, and
A. P.
Wilkinson
,
J. Am. Chem. Soc.
132
(
44
),
15496
(
2010
).
35.
J. C.
Hancock
,
K. W.
Chapman
, and
G. J.
Halder
,
Chem. Mater.
27
,
3912
(
2015
).
36.
B. R.
Hester
,
A. M.
dos Santos
,
J. J.
Molaison
,
J. C.
Hancock
, and
A. P.
Wilkinson
,
J. Am. Chem. Soc.
139
(
38
),
13284
(
2017
).
37.
Fuel Cell Technologies Office
, Multi-Year Research, Development, and Demonstration Plan, Planned Program Activities for 2011–2020,
US Department of Energy, EERE
,
2012
.
38.
A. D.
Martinez
,
L.
Krishna
,
L. L.
Baranowski
,
M. T.
Lusk
,
E. S.
Toberer
, and
A. C.
Tamboli
,
IEEE J. Photovoltaics
3
,
1305
(
2013
).
39.
D. Y.
Kim
,
S.
Stefanoski
,
O. O.
Kurakevych
, and
T. A.
Strobel
,
Nat. Mater.
14
,
169
(
2015
).
40.
A. J.
Karttunen
and
T.
Fassler
,
Chem.–Eur. J.
20
,
6693
(
2014
).
41.
E. D.
Sloan
and
C. A.
Koh
,
Clatharte Hydrates of Natural Gases
(
CRC Press
,
Boca Raton, FL
,
2007
).
42.
J.
Neuefeind
,
J. M.
Feygenson
,
J.
Carruth
,
R.
Hoffmann
, and
K. K.
Chipley
,
Nucl. Instrum. Methods Phys. Res., Sect. B
287
,
68
(
2012
).
43.
M.
Rennich
, “
Sample envirnoment gas panel design analysis and calculations
,” ORNL Document No. 107030500-DA0074-R00,
2014
.
44.
C.
Yang
,
X. P.
Wang
, and
M. A.
Omary
,
J. Am. Chem. Soc.
129
,
15454
(
2007
).
45.
C.
Yang
,
X. P.
Wang
, and
M. A.
Omary
,
Angew. Chem., Int. Ed.
48
,
2500
(
2009
).
You do not currently have access to this content.