Recent developments at the National Institute of Standards and Technology’s facility for Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (SIRCUS) are presented. The facility is predicated on the use of broadly tunable narrow-band lasers as light sources in two key radiometric calibration applications. In the first application, the tunable lasers are used to calibrate the spectral power responsivities of primary standard detectors against an absolute cryogenic radiometer (ACR). The second function is to calibrate the absolute radiance and irradiance responsivities of detectors with uniform light sources, typically generated by coupling the laser light into integrating spheres. The radiant flux from the uniform sources is determined by the ACR-calibrated primary standard detectors. Together these sources and detectors are used to transfer radiometric scales to a variety of optical instruments with low uncertainties. We describe methods for obtaining the stable, uniform light sources required for low uncertainty measurements along with advances in laser sources that facilitate tuning over broader wavelength ranges. Example applications include the development of a detector-based thermodynamic temperature scale, the calibration and characterization of spectrographs, and the use of a traveling version of SIRCUS (T-SIRCUS) to calibrate large aperture Earth observing instruments and astronomical telescopes.

1.
S. W.
Brown
,
G.
Eppeldauer
, and
K. R.
Lykke
, “
Facility for spectral irradiance and radiance responsivity calibrations using uniform sources
,”
Appl. Opt.
45
(
32
),
8218
8237
(
2006
).
2.
J. M.
Houston
and
J. P.
Rice
, “
NIST reference cryogenic radiometer designed for versatile performance
,”
Metrologia
43
,
S31
S35
(
2006
).
3.
J.
Fowler
and
M.
Litorja
, “
Geometric area measurements of circular apertures for radiometry at NIST
,”
Metrologia
40
,
S9
S12
(
2003
).
4.
Rippey Corporation, El Dorado Hills, CA.
5.
P.-S.
Shaw
 et al, “
Ultraviolet characterization of integrating spheres
,”
Appl. Opt.
46
,
5119
5128
(
2007
).
6.
P.-S.
Shaw
,
U.
Arp
, and
K. R.
Lykke
, “
Measurement of He ultraviolet-induced fluorescence yield from integrating spheres
,”
Metrologia
46
,
S191
S196
(
2009
).
7.
E. A.
Early
 et al, “
Radiometric calibration of the scripps Earth polychromatic imaging Camera
,”
Proc. SPIE
4483
,
77
84
(
2001
).
8.
T.
Stone
, U.S. Geological Survey, Flagstaff, AZ, personal communication (
2005
).
9.
P.-S.
Shaw
 et al,
National Institute of Standards and Technology Primary Optical Watt Radiometer
(unpublished).
10.
N. P.
Fox
, “
Trap detectors and their properties
,”
Metrologia
28
,
197
202
(
1991
).
11.
E. F.
Zalewski
and
C. R.
Duda
, “
Silicon photodiode device with 100% external quantum efficiency
,”
Appl. Opt.
22
(
18
),
2867
2873
(
1983
).
12.
T. R.
Gentile
 et al, “
Internal quantum efficiency modeling of silicon photodiodes
,”
Appl. Opt.
49
(
10
),
1859
1864
(
2010
).
13.
P.-S.
Shaw
,
R.
Gupta
, and
K. R.
Lykke
, “
Stability of photodiodes under irradiation with a 157-nm pulsed excimer laser
,”
Appl. Opt.
44
,
197
207
(
2005
).
14.
G. P.
Eppeldauer
and
D. C.
Lynch
, “
Opto-mechanical and electronic design of a tunnel-trap Si-radiometer
,”
J. Res. Natl. Inst. Stands. Technol.
105
,
813
828
(
2000
).
15.
G. P.
Eppeldauer
and
V. B.
Podobedov
, “
Infrared spectral responsivity scale realization and validations
,”
Appl. Opt.
51
,
6003
6008
(
2012
).
16.
General Photonics Corp., Chino, CA.
17.
Coherent Nufern, East Granby, CT; NuBeam Flat-Top.
18.
E. F.
Zalewski
, “
Radiometry and photometry
,” in
Handbook of Optics
, edited by
M.
Bass
(
McGraw-Hill, Inc.
,
New York
,
1995
), pp.
17
24
.
19.
P.
Moon
and
D. E.
Spencer
, “
Radiant flux through apertures-I
,”
J. Franklin Inst.
306
(
1
),
1
(
1978
).
20.
Lockheed Martin, Bethesda, MD; Argos Aculight.
21.
Daylight Solutions Inc., San Diego, CA.
22.
A.
Robertson
and
A. I.
Ferguson
, “
Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration
,”
Opt. Lett.
19
,
117
119
(
1994
).
23.
S. D.
Butterworth
,
S.
Girard
, and
D. C.
Hanna
, “
High-power, broadly tunable all-solid-state synchronously pumped lighium triborate optical parametric oscillator
,”
J. Opt. Soc. Am. B
12
(
11
),
2158
2167
(
1995
).
24.
T. W.
Tukker
,
C.
Otto
, and
J.
Greve
, “
Design, optimization and characterization of a narrow-bandwidth optical parametric oscillator
,”
J. Opt. Soc. Am. B
16
(
1
),
90
95
(
1999
).
25.
F.
Kienle
 et al, “
High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator
,”
Opt. Express
20
(
7
),
7008
7014
(
2012
).
26.
M.
Jurna
 et al, “
Noncritical, phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy
,”
Appl. Phys. Lett.
89
,
251116
(
2006
).
27.
M.
Tsunekane
 et al, “
Broadband tuning of a continuous-wave doubly resonant, lithium triborate, optical parametric oscillator from 791 to 1620 nm
,”
Appl. Opt.
37
(
27
),
6459
6462
(
1998
).
28.
Coherent, Inc., Santa Clara, CA; Paladin Advanced 532.
29.
M. H.
Dunn
and
A. I.
Ferguson
, “
Coma compensation in off-axis laser resonators
,”
Opt. Commun.
20
(
2
),
214
219
(
1977
).
30.
C.
Du
 et al, “
Efficient intracavity second-harmonic generation at 1.06 μm in a BiB3O6 (BIBO) crystal
,”
Appl. Phys. B
73
(
3
),
215
217
(
2001
).
31.
Ekspla, Lituania; NT242.
32.
Y.
Zong
 et al, “
A new method for spectral irradiance and radiance responsivity calibrations using kilohertz pulsed tunable optical parametric oscillators
,”
Metrologia
49
,
S124
S129
(
2012
).
33.
K. D.
Mielenz
,
R. D.
Saunders
, and
J. B.
Shumaker
, “
Spectroradiometric determination of the freezing temperature of gold
,”
J. Res. Natl. Inst. Stands. Technol.
95
,
49
67
(
1990
).
34.
D. J.
Pugh
and
K.
Jackson
, “
Automatic gauge block measurement using multiple wavelength interferometry
,”
Proc. SPIE
656
,
244
250
(
1986
).
35.
V. E.
Anderson
,
N. P.
Fox
, and
D. H.
Nettleton
, “
Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry
,”
Appl. Opt.
31
(
4
),
536
545
(
1992
).
36.
L.
Yan
 et al, “
Improved beam uniformity in multimode fibers using piezoelectric-based spatial mode scrambling for medical applications
,”
Opt. Eng. Lett.
47
,
090502
-
1
090502-3
(
2008
).
37.
Y.
Fujimaki
and
H.
Taniguchi
, “
Reduction of speckle contrast in multimode fibers using piezoelectric vibrator
,”
Proc. SPIE
8960
,
89601S
(
2014
).
38.
D.
Dayton
,
H.
Gonglewski
, and
C.
StArnauld
, “
Laser speckle and atmospheric scintillation dependence on laser spectral bandwidth
,”
Proc. SPIE
7476
,
74760A
(
2009
).
39.
See http://www.nist.gov/traceability/ for NIST policy on traceability.
40.
J. M.
Houston
and
D. J.
Livigni
, “
Comparison of two cryogenic radiometers at NIST
,”
J. Res. Natl. Inst. Stand. Technol.
106
,
641
647
(
2001
).
41.
J.
Geist
,
E. F.
Zalewski
, and
A. R.
Schaefer
, “
Spectral response self-calibration and interpolation of silicon photodiodes
,”
Appl. Opt.
19
(
22
),
3795
3799
(
1980
).
42.
E. F.
Zalewski
and
J.
Geist
, “
Silicon photodiode absolute spectral response self-calibration
,”
Appl. Opt.
19
(
8
),
1214
1216
(
1980
).
43.
J. L.
Gardner
, “
Uncertainty propagation for NIST visible spectral standards
,”
J. Res. Natl. Inst. Stand. Technol.
109
,
305
318
(
2004
).
44.
J. L.
Gardner
, “
Uncertainties in interpolated spectral data
,”
J. Res. Natl. Inst. Stand. Technol.
108
(
1
),
69
78
(
2003
).
45.
T. C.
Larason
and
J. M.
Houston
,
Spectroradiometric Detector Measurements: Ultraviolet, Visible, and Near-Infrared Detectors for Spectral Power
, NIST Special Publication 250-41 (
U.S. Department of Commerce, NIST
,
Gaithersburg, MD
,
2008
).
46.
T. R.
Gentile
 et al, “
National institute of standards and technology high-accuracy cryogenic radiometer
,”
Appl. Opt.
35
(
7
),
1056
1068
(
1996
).
47.
T. R.
Gentile
,
J. M.
Houston
, and
C. L.
Cromer
, “
Realization of a scale of absolute spectral response using the NIST high-accuracy cryogenic radiometer
,”
Appl. Opt.
35
(
22
),
4392
4403
(
1996
).
48.
T. C.
Larason
,
S. S.
Bruce
, and
C. L.
Cromer
, “
The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm
,”
J. Res. Natl. Inst. Stand. Technol.
101
,
133
140
(
1996
).
49.
J. H.
Walker
 et al,
Spectral Irradiance Calibrations
, NBS Special Publication 250-20 (
U.S. Government Printing Office
,
Washington, DC
,
1987
).
50.
S. W.
Brown
and
B. C.
Johnson
, “
Development of a portable integrating sphere source for the Earth observing system’s calibration validation programme
,”
Int. J. Remote Sensing
24
,
215
224
(
2002
).
51.
B. C.
Johnson
 et al, “
Comparison of cryogenic radiometry and thermal radiometry calibrations at NIST using multichannel filter radiometers
,”
Metrologia
40
,
S216
S219
(
2003
).
52.
J.
Fischer
and
J.
Ullrich
, “
The new system of units
,”
Nat. Phys.
12
,
4
7
(
2016
).
53.
E. R.
Woolliams
 et al, “
Primary radiometry for the Mise-en-Pratique for the definition of the Kelvin: The hyprid method
,”
Int. J. Thermophys.
32
(
11
),
1
11
(
2011
).
54.
H.
Preston-Thomas
, “
The international temperature scale of 1990 (ITS-90)
,”
Metrologia
27
,
3
10
(
1990
).
55.
D.
Halliday
and
R.
Resnick
,
Fundamentals of Physics
, 2nd ed. (
John Wiley and Sons, Inc.
,
New York
,
1981
).
56.
H. W.
Yoon
 et al, “
The realization and the dissemination of the detector-based Kelvin
,” in
Proceedings of Tempmeko 04
,
Dubrovnik, Croatia
,
2004
.
57.
H. W.
Yoon
 et al, “
Thermodynamic radiation thermometry for the next SI
,”
Int. J. Thermophys.
29
(
1
),
285
300
(
2008
).
58.
H. W.
Yoon
, “
The realization and the dissemination of thermodynamic temperature scales
,”
Metrologia
43
,
S22
S26
(
2006
).
59.
H. W.
Yoon
 et al, “
Temperature scales using radiation thermometers calibrated from absolute irradiance and radiance responsivity
,” in
NCSL International Workshop and Symposium
,
Orlando, FL
,
2003
.
60.
N. P.
Fox
,
J. E.
Martin
, and
D. H.
Nettleton
, “
Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminium
,”
Metrologia
28
,
357
374
(
1991
).
61.
H. W.
Yoon
and
C. E.
Gibson
, “
Determination of radiance temperatures using detectors calibrated for absolute spectral power response
,” in
Proceedings of the 7th International Symposium on Temperature and Thermal measurements in Industry and Science (TEMPMEKO ’99)
, edited by
J. F.
Dubbeldam
(
Delft
,
The Netherlands
,
2000
), pp.
737
742
.
62.
H. W.
Yoon
 et al, “
Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity
,”
Int. J. Thermophys.
32
,
2217
(
2011
).
63.
K.
Anhalt
and
G.
Machin
, “
Thermodynamic termperature by primary radiometry
,”
Philos. Trans. R. Soc. A
374
,
20150041
(
2016
).
64.
E. I.
Stearns
and
R. E.
Stearns
, “
An example of a method for correcting radiance data for bandpass error
,”
Color Res. Appl.
13
(
4
),
257
259
(
1988
).
65.
J. L.
Gardner
, “
Spectral deconvolution applications for colorimetry
,”
Color Res. Appl.
39
(
5
),
430
435
(
2013
).
66.
Y.
Ohno
, “
A flexible bandpass correction method for spectrometers
,” in
AIC Color 05-10th Congress of the International Colour Association
,
Grenada, Spain
,
2005
.
67.
S.
Nevas
 et al, “
Simultaneous correction of bandpass and stray-light effects in array spectroradiometer data
,”
Metrologia
49
,
S43
S47
(
2012
).
68.
S.
Eichstaedt
 et al, “
Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction
,”
Metrologia
50
,
107
118
(
2013
).
69.
S. W.
Brown
 et al, “
Stray-light correction algorithm for spectrographs
,”
Metrologia
40
,
S81
S84
(
2003
).
70.
S. W.
Brown
 et al, “
Advances in Radiometry for Ocean Color
,” in
Ocean Optics Protocols for Satellite Ocean Color Sensor Validation
, Volume VI of Special Topics in Ocean Optics Protocols and Appendices, Revision 4, edited by
J. L.
Mueller
,
G. S.
Fargion
, and
C. R.
McClain
(
NASA
,
Greenbelt, MD
,
2004
), pp.
8
35
.
71.
M. A.
Feinholz
 et al, “
Stray light correction of the marine optical system
,”
J. Atmos. Oceanic Technol.
26
,
57
73
(
2009
).
72.
Y.
Zong
 et al, “
A simple spectral stray light correction method for array spectroradiometers
,”
Appl. Opt.
45
(
6
),
1111
1119
(
2006
).
73.
M. A.
Feinholz
 et al, “
Stray light correction algorithm for multichannel hyperspectral spectrographs
,”
Appl. Opt.
51
(
16
),
3631
3641
(
2012
).
74.
Y.
Zong
 et al, “
Correction of stray light in spectroradiometers and imaging instruments
,” in
Proceedings of the CIE 26th Session
(
CIE
,
Beijing, China
,
2007
), Vol. D2, pp.
33
36
.
75.
B. C.
Johnson
 et al, “
System-level calibration of a transfer radiometer used to validate EOS radiance scales
,”
Int. J. Remote Sensing
24
,
339
356
(
2003
).
76.
N.
Souaidia
 et al, “
Comparison of laser-based and conventional calibrations of sun photometers
,”
Proc. SPIE
5155
,
61
72
.
77.
B. C.
Johnson
 et al, “
Calibration and characterization of a SeaPRISM radiometer for AERONET-OC
,” available at: https://www.eposters.net/poster/calibration-and-characterization-of-a-seaprism-radiometer-for-aeronet-oc.
78.
J. W.
Harder
 et al, “
The SORCE SIM solar spectrum: Comparison with recent observations
,”
Solar Phys.
263
,
3
24
(
2010
).
79.
R. A.
Barnes
 et al, “
Comparison of two methodologies for calibrating satellite instruments in the visible and near-infrared
,”
Appl. Opt.
54
(
35
),
10376
10396
(
2015
).
80.
J.
McIntire
 et al, “
Results from solar reflective band end-to-end testing for VIIRS F1 sensor using T-SIRCUS
,”
Proc. SPIE
8153
,
8153OI
(
2011
).
81.
E.
Kintisch
, “
U. S prepares to launch flawed satellite
,”
Science
319
,
886
(
2008
).
82.
J. J.
Butler
and
R. A.
Barnes
, “
Calibration strategy for the Earth observing system (EOS)-AM1 platform
,”
IEEE Trans. Geosci. Remote Sensing
36
(
4
),
1056
1061
(
1998
).
83.
H. R.
Gordon
, “
The Marine Optical Muoy (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration
,”
Proc. SPIE
6744
,
67441M1
67441M6
(
2007
).
84.
See http://oceancolor.gsfc.nasa.gov/DOCS/ocb.oceancolorletter.pdf for
D. A.
Siegel
,
J. A.
Yoder
, and
C. R.
McClain
, Thoughts about the future of satellite ocean color observations,
2008
.
85.
B.
Guenther
, “
Application of laser-source-based calibration for VIIRS for ultra-high accuracy spectroradiometric calibrations
,”
Proc. SPIE
8372
,
8372OE
(
2012
).
86.
C. W.
Stubbs
 et al, “
Precise throughut determination of the PanSTARRS telescope and the gigapixel imager using a calibrated silicon photodiode and a tunable laser: Initial results
,”
Astrophys. J. Suppl. Series
191
,
376
388
(
2010
).
87.
P. M.
Korngut
 et al, “
The cosmic infrared background experiment (CIBER): The narrowband spectrometer
,”
Astrophys. J. Suppl. Series
207
(
34
),
1
12
(
2013
).
88.
C. W.
Stubbs
and
J. L.
Tonry
, “
Toward 1% photometry: End-to-end calibration of astronomical telescopes and detectors
,”
Astrophys. J.
646
,
1436
1444
(
2006
).
89.
C. W.
Stubbs
 et al, “
Preliminary results from detector-based throughput calibration of the CTIO mosaic imager and Blanco telescope using a tunable laser
,” in
The Future of Photometric, Spectrophotometric and Polarimetric Standardization
, ASP Conference Series Vol. 364, edited by
C.
Sterken
(
Astronomical Society of the Pacific, San Francisco
,
2007
).
90.
C. E.
Cramer
 et al, “
Tunable laser techniques for improving the precision of observational astronomy
,”
Proc. SPIE
8450
,
8450OS
(
2012
).
91.
J. T.
Woodward
 et al, “
Spectroradiometric calibration of telescopes using laser illumination of flat field screens
,”
Proc. SPIE
7737
,
77372A
(
2010
).
92.
G. P.
Eppeldauer
, “
Spectral responsivity-based calibration of photometer and colorimeter standards
,”
J. Mod. Opt.
60
,
1124
(
2013
).
93.
A.
Sperling
, Physikalisch Technische Bundesanstalt, Braunschweig, Germany, personal communication (
2002
).
94.
M.
Noorma
 et al, “
Characterization of filter radiometers with a wavelength-tunable laser source
,”
Metrologia
40
,
S220
S223
(
2003
).
95.
J. L.
Gardner
 et al, “
New basis for the Australian realization of the candela
,”
Metrologia
35
,
235
239
(
1998
).
96.
P.
Zou
 et al, “
Absolute spectral radiance responsivity calibration of the radiance transfer standard detector
,”
Proc. SPIE
6621
,
66211B
(
2008
).
97.
D.-H.
Lee
 et al, “
The KRISS PLUS (Pulsed Laser-based Uniform Source) facility for measurement of spectral radiance responsivity
,” in
XX IMEKO World Congress
,
Busan, Republic of Korea
,
2012
.
99.
A.
Angal
 et al, “
Radiometric Calibration of G-LiHT’s imaging spectrometer using GLAMR for satellite sensor intercalibration
,”
Proc. SPIE
9607
,
9607c
(
2015
).
101.
J. T.
Woodward
 et al, “
Supercontinuum sources for metrology
,”
Metrologia
46
,
S277
S282
(
2009
).
102.
A. P.
Levick
 et al, “
Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: The spectrally tunable absolute irradiance and radiance source
,”
Appl. Opt.
53
(
16
),
3508
3519
(
2014
).
103.
G.
Eppeldauer
 et al, “
Extension of the NIST spectral responsivity scale to the infrared using improved-NEP pyroelectric detectors
,”
Metrologia
46
,
S155
S159
(
2009
).
104.

Identification of commercial equipment to specify adequately an experimental problem does not imply recommendation or endorsement by the NIST nor does it imply that the equipment identified is necessarily the best available for the purpose.

You do not currently have access to this content.