The quality of reconstructed images in Electrical Impedance Tomography (EIT) depends on two essential factors: first, precision of the EIT hardware in current injection and voltage measurement and second, efficiency of its image reconstruction algorithm. Therefore the current source plays an important and a vital role in EIT instruments. Floating-load current sources constructed using sink and source drivers have better performance and higher output impedance than grounded-load (single-ended) current sources. In addition, a main feature of this kind is that the current source is not connected to the ground potential directly but via a large impedance. In this paper, we first focus on recent studies on designed EIT current sources, and after that, a practical design of a floating-load high output impedance current source—operating over a wide frequency band—will be proposed in detail. Simulation results of the proposed voltage-controlled current source (VCCS), along with some other models, will be shown and compared. At the end, the results of practical tests on the VCCS and a few EIT images, taken using our prototype EIT system coupled with the mentioned VCCS, will be illustrated which proves the quality of the proposed current source.

1.
L.
Horesh
, “
Some novel approaches in modelling and image reconstruction for multi-frequency electrical impedance tomography of the human brain
,” Ph.D. thesis,
University College London
,
2006
.
2.
Electrical safety
”, in
Medical Instrumentation: Application and Design
, 4th ed., edited by
W. H.
Olson
and
J. G.
Webster
(
Wiley
,
Hoboken, NJ
), pp.
638
675
, (
2010
).
3.
D.
Zhao
, “
High output-impedance current source for electrical impedance tomography
,” in
IEEE International Conference on Biomedical Engineering and Informatics (BMEI)
(
IEEE
,
2011
).
4.
D. S.
Holder
,
Electrical Impedance Tomography: Methods, History and Applications
, Series in Medical Physics and Biomedical Engineering (
Institute of Physics Publishing
,
2005
).
5.
M.
Rafiei-Naeini
and
H.
McCann
, “
Low-noise current excitation subsystem for medical EIT
,”
Physiol. Meas.
29
(
6
),
S173
(
2008
).
6.
J.
Liu
,
X.
Qiao
,
M.
Wang
,
W.
Zhang
,
G.
Li
, and
L.
Lin
, “
The differential Howland current source with high signal to noise ratio for bioimpedance measurement system
,”
Rev. Sci. Instrum.
85
,
055111
(
2014
).
7.
R.
Bragos
,
J.
Rosell
, and
P.
Riu
, “
A wide-band AC-coupled current source for electrical impedance tomography
,”
Physiol. Meas.
15
,
A91
(
1994
).
8.
O.
Casas
,
J.
Rosell
,
R.
Bragos
,
A.
Lozano
, and
P. J.
Riu
, “
A parallel broadband real-time system for electrical impedance tomography
,”
Physiol. Meas.
17
,
A1
(
1996
).
9.
B.
Han
,
Y.
Xu
, and
F.
Dong
, “
Design of current source for multi-frequency simultaneous electrical impedance tomography
,”
Rev. Sci. Instrum.
88
,
094709
(
2017
).
10.
S.
Franco
,
Design With Operational Analog Integrated Circuits
, 4th ed. (
McGraw-Hill
,
New York
,
2015
), pp.
P71
P80
.
11.
B. H.
Brown
and
A. D.
Seagar
, “
The Sheffield data collection system
,”
Physiol. Meas.
8
,
91
(
1987
).
12.
K. G.
Boone
and
D. S.
Holder
, “
Current approaches to analogue instrumentation design in electrical impedance tomography
,”
Physiol. Meas.
17
,
229
(
1996
).
13.
H.
Hong
,
A.
Demosthenous
,
I. F.
Triantis
,
P.
Langlois
, and
R.
Bayford
, “
A high-output impedance CMOS current driver for bioimpedance measurements
,” in
IEEE Biomedical Circuits and Systems Conference (BioCAS)
(
IEEE
,
2010
).
14.
A. A.
Silverio
and
A. A.
Silverio
, “
A high output impedance current source for wideband bioimpedance spectroscopy using 0.35μm TSMC CMOS technology
,”
Int. J. Eng. Appl. Sci.
1
(
2
),
68
(
2012
).
15.
C. W.
Denyer
,
F. J.
Lidgey
,
Q. S.
Zhu
, and
C. N.
McLeod
, “
High output impedance voltage controlled current source for Bioimpedance instrumentation
,” in
IEEE Engineering in Medicine and Biology Society (EMBC)
(
IEEE
,
1993
).
16.
C. W.
Denyer
,
F. J.
Lidgey
,
Q. S.
Zhu
, and
C. N.
McLeod
, “
A high output impedance current source
,”
Physiol. Meas.
15
,
A79
(
1994
).
17.
A. S.
Ross
,
G. J.
Saulnier
,
J. C.
Newell
, and
D.
Isaacson
, “
Current source design for electrical impedance tomography
,”
Physiol. Meas.
24
,
509
(
2003
).
18.
J.
Jossinet
,
C.
Tourtel
, and
R.
Jarry
, “
Active current electrodes for in vivo electrical impedance tomography
,”
Physiol. Meas.
15
,
A83
(
1994
).
19.
A. S.
Tucker
,
R. M.
Fox
, and
R. J.
Sadleir
, “
Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation
,”
IEEE Trans. Biomed. Circuits Syst.
7
,
63
(
2013
).
20.
M.
Goharian
,
A.
Jegatheesan
,
K.
Chin
, and
G. R.
Moran
, “
A DSP based multi-frequency electrical impedance tomography system
,”
Ann. Biomed. Eng.
36
(
9
),
1594
(
2008
).
21.
A. J.
Wilson
,
P.
Milnes
,
A. R.
Waterworth
,
R. H.
Smallwood
, and
B. H.
Brown
, “
Mk3.5: A modular, multi-frequency successor to the Mk3a EIS/EIT system
,”
Physiol. Meas.
22
,
49
(
2001
).
22.
Y.
Yang
and
J.
Jia
, “
A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging
,”
Rev. Sci. Instrum.
88
,
085110
(
2017
).
23.
H.
Wi
,
H.
Sohal
,
A. L.
McEwan
,
E. J.
Woo
, and
T. I.
Oh
, “
Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring
,”
IEEE Trans. Biomed. Circuits Syst.
8
(
1
),
119
(
2014
).
24.
R. D.
Cook
,
G. J.
Saulneir
,
D. G.
Gisser
,
J. C.
Goble
,
J. C.
Newell
, and
D.
Isaacson
, “
ACT3: A high-speed, high-precision electrical impedance tomography
,”
IEEE Trans. Biomed. Eng.
41
(
8
)
713
(
1994
).
25.
J. W.
Haslett
and
M. K. N.
Rao
, “
A high quality controlled current source
IEEE Trans. Instrum. Meas.
28
(
2
)
132
(
1979
).
26.
IEC 60601–1,
Medical Electrical Equipment Part 1: General Requirements for Safety and Essential Performance
, 3rd ed. (
International Electrotechnical Commission
,
2005
).
27.
M.
Khalighi
,
B.
Vosoughi Vahdat
,
M.
Mortazavi
, and
M.
Mikaeili
, “
Design and implementation of precise hardware for electrical impedance tomography
,”
Iran. J. Sci. Technol., Trans. Electr. Eng.
38
(
E1
),
1
(
2014
).
28.
M.
Khalighi
,
B.
Vosoughi Vahdat
,
M.
Mortazavi
, and
M.
Soleimani
, “
Practical design of low-cost instrumentation for industrial electrical impedance tomography (EIT)
”, in
IEEE Instrumentation and Measurement Technology Conference (I2MTC)
(
IEEE
,
Graz
,
2012
).
29.
Z.
Shuai
,
X.
Guizhi
,
W.
Huanli
and
G.
Duyan
, “
Multi-frequency EIT hardware system based on DSP
”, in
28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
(
IEEE
,
China
,
2006
).
30.
M.
Khalighi
,
B.
Vosoughi Vahdat
,
M.
Mortazavi
,
M.
Soleimani
, and
C. L.
Yang
, “
A practical voltage-controlled current source design for electrical impedance tomography
,”
13th International Conference in Electrical Impedance Tomography
,
2012
.
31.
AD844, 60MHz 2000 V/μs Monolitic Op Amp, Rev. F (
Analog Devices, Inc.
,
2009
).
32.
C. W. L.
Denyer
, “
Electronics for real-time and three-dimensional electrical impedance tomography
,” Ph.D. thesis,
Oxford Brookes University
,
1996
.
33.
B.
Filho
,
B. H.
Brown
, and
A. J.
Wilson
, “
A comparison of modified Howland circuits as current generators with current mirror type circuits
,”
Physiol.Meas.
21
,
1
(
2000
).
34.
M.
Vauhkonen
,
W. R. B.
Lionheart
,
L. M.
Heikkinen
,
P. J.
Vauhkonen
, and
J. P.
Kaipio
, “
A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images
,”
Physiol. Meas.
22
,
107
(
2001
).
35.
A.
Adler
and
W. R. B.
Lionheart
, “
Uses and abuses of EIDORS: An extensible software base for EIT
,”
Physiol. Meas.
27
,
S25
(
2006
).
36.
A.
Adler
,
P. O.
Gaggero
, and
Y.
Maimaitigiang
, “
Adjacent stimulation and measurement patterns considered harmful
,”
Physiol. Meas.
32
,
731
(
2011
).
37.
A.
Adler
 et al., “
GREIT: A unified approach to 2D linear EIT reconstruction of lung images
,”
Physiol. Meas.
30
,
S35
(
2009
).
You do not currently have access to this content.