Plasma-based acceleration experiments require capillaries with a radius of a few hundred microns to confine plasma up to a centimeter scale capillary length. A long and controlled plasma channel allows to sustain high fields which may be used for manipulation of the electron beams or to accelerate electrons. The production of these capillaries is relatively complicated and expensive since they are usually made with hard materials whose manufacturing requires highly specialized industries. Fine variations of the capillary shape may significantly increase the cost and time needed to produce them. In this article, we demonstrate the possibility of using 3D printed polymeric capillaries to drive a hydrogen-filled plasma discharge up to 1 Hz of repetition rate in an RF based electron linac. The plasma density distribution has been measured after several shot intervals, showing the effect of the surface ablation on the plasma density distribution. This effect is almost invisible in the earlier stages of the discharge. After more than 55000 shots (corresponding to more than 16 h of working time), the effects of the ablation on the plasma density distribution are not evident and the capillary can still be used. The use of these capillaries will significantly reduce the cost and time for prototyping, allowing us to easily manipulate their geometry, laying another building block for future cheap and compact particle accelerators.

1.
B.
Green
,
S.
Kovalev
,
V.
Asgekar
,
G.
Geloni
,
U.
Lehnert
,
T.
Golz
,
M.
Kuntzsch
,
C.
Bauer
,
J.
Hauser
,
J.
Voigtlaender
 et al, “
High-field high-repetition-rate sources for the coherent THz control of matter
,”
Sci. Rep.
6
,
22256
(
2016
).
2.
F.
Giorgianni
,
E.
Chiadroni
,
A.
Rovere
,
M.
Cestelli-Guidi
,
A.
Perucchi
,
M.
Bellaveglia
,
M.
Castellano
,
D.
Di Giovenale
,
G.
Di Pirro
,
M.
Ferrario
,
R.
Pompili
,
C.
Vaccarezza
,
F.
Villa
,
A.
Cianchi
,
A.
Mostacci
,
M.
Petrarca
,
M.
Brahlek
,
N.
Koirala
,
S.
Oh
, and
S.
Lupi
, “
Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator
,”
Nat. Commun.
7
,
11421
(
2016
).
3.
P.
Emma
,
R.
Akre
,
J.
Arthur
,
R.
Bionta
,
C.
Bostedt
,
J.
Bozek
,
A.
Brachmann
,
P.
Bucksbaum
,
R.
Coffee
,
F.-J.
Decker
 et al, “
First lasing and operation of an ångstrom-wavelength free-electron laser
,”
Nat. Photonics
4
(
9
),
641
647
(
2010
).
4.
W.
Ackermann
,
G.
Asova
,
V.
Ayvazyan
,
A.
Azima
,
N.
Baboi
,
J.
Bähr
,
V.
Balandin
,
B.
Beutner
,
A.
Brandt
,
A.
Bolzmann
 et al, “
Operation of a free-electron laser from the extreme ultraviolet to the water window
,”
Nat. Photonics
1
(
6
),
336
342
(
2007
).
5.
O.
Adriani
,
S.
Albergo
,
D.
Alesini
,
M.
Anania
,
D.
Angal-Kalinin
,
P.
Antici
,
A.
Bacci
,
R.
Bedogni
,
M.
Bellaveglia
,
C.
Biscari
 et al, “
Technical design report EuroGammaS proposal for the ELI-NP gamma beam system
,” preprint arXiv:1407.3669 (
2014
).
6.
C.
Vaccarezza
,
D.
Alesini
,
M. P.
Anania
,
A.
Bacci
,
A.
Biagioni
,
F.
Bisesto
,
M.
Bellaveglia
,
P.
Cardarelli
,
F.
Cardelli
,
A.
Cianchi
 et al, “
The SPARC_LAB Thomson source
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
829
,
237
242
(
2016
).
7.
W. P.
Leemans
,
B.
Nagler
,
A. J.
Gonsalves
,
Cs.
Tóth
,
K.
Nakamura
,
C. G. R.
Geddes
,
E.
Esarey
,
C. B.
Schroeder
, and
S. M.
Hooker
, “
GeV electron beams from a centimetre-scale accelerator
,”
Nat. Phys.
2
(
10
),
696
699
(
2006
).
8.
M.
Litos
,
E.
Adli
,
W.
An
,
C. I.
Clarke
,
C. E.
Clayton
,
S.
Corde
,
J. P.
Delahaye
,
R. J.
England
,
A. S.
Fisher
,
J.
Frederico
,
S.
Gessner
,
S. Z.
Green
,
M. J.
Hogan
,
C.
Joshi
,
W.
Lu
,
K. A.
Marsh
,
W. B.
Mori
,
P.
Muggli
,
N.
Vafaei-Najafabadi
,
D.
Walz
,
G.
White
,
Z.
Wu
,
V.
Yakimenko
, and
G.
Yocky
, “
High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
,”
Nature
515
(
7525
),
92
95
(
2014
).
9.
R.
Pompili
,
M. P.
Anania
,
M.
Bellaveglia
,
A.
Biagioni
,
S.
Bini
,
F.
Bisesto
,
E.
Brentegani
,
G.
Castorina
,
E.
Chiadroni
,
A.
Cianchi
 et al, “
Experimental characterization of active plasma lensing for electron beams
,”
Appl. Phys. Lett.
110
(
10
),
104101
(
2017
).
10.
J.
van Tilborg
,
S.
Steinke
,
C. G. R.
Geddes
,
N. H.
Matlis
,
B. H.
Shaw
,
A. J.
Gonsalves
,
J. V.
Huijts
,
K.
Nakamura
,
J.
Daniels
,
C. B.
Schroeder
,
C.
Benedetti
,
E.
Esarey
,
S. S.
Bulanov
,
N. A.
Bobrova
,
P. V.
Sasorov
, and
W. P.
Leemans
, “
Active plasma lensing for relativistic laser-plasma-accelerated electron beams
,”
Phys. Rev. Lett.
115
(
18
),
184802
(
2015
).
11.
N. A.
Bobrova
,
A.
Esaulov
,
J. I.
Sakai
,
P.
Sasorov
,
D.
Spence
,
A.
Butler
,
S.
Hooker
, and
S.
Bulanov
, “
Simulations of a hydrogen-filled capillary discharge waveguide
,”
Phys. Rev. E
65
(
1
),
016407
(
2001
).
12.
D.
Spence
and
S.
Hooker
, “
Investigation of a hydrogen plasma waveguide
,”
Phys. Rev. E
63
(
1
),
015401
(
2000
).
13.
D.
Kaganovich
,
P.
Sasorov
,
C.
Cohen
, and
A.
Zigler
, “
Variable profile capillary discharge for improved phase matching in a laser wakefield accelerator
,”
Appl. Phys. Lett.
75
(
1999
),
772
774
(
1999
).
14.
A.
Marocchino
,
M. P.
Anania
,
M.
Bellaveglia
,
A.
Biagioni
,
S.
Bini
,
F.
Bisesto
,
E.
Brentegani
,
E.
Chiadroni
,
A.
Cianchi
,
M.
Croia
 et al, “
Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches
,”
Appl. Phys. Lett.
111
(
18
),
184101
(
2017
).
15.
M.
Ferrario
,
D.
Alesini
,
M. P.
Anania
,
A.
Bacci
,
M.
Bellaveglia
,
O.
Bogdanov
,
R.
Boni
,
M.
Castellano
,
E.
Chiadroni
,
A.
Cianchi
,
S. B.
Dabagov
,
C.
De Martinis
,
D.
Di Giovenale
,
G.
Di Pirro
,
U.
Dosselli
,
A.
Drago
,
A.
Esposito
,
R.
Faccini
,
A.
Gallo
,
M.
Gambaccini
,
C.
Gatti
,
G.
Gatti
,
A.
Ghigo
,
D.
Giulietti
,
A.
Ligidov
,
P.
Londrillo
,
S.
Lupi
,
A.
Mostacci
,
E.
Pace
,
L.
Palumbo
,
V.
Petrillo
,
R.
Pompili
,
A. R.
Rossi
,
L.
Serafini
,
B.
Spataro
,
P.
Tomassini
,
G.
Turchetti
,
C.
Vaccarezza
,
F.
Villa
,
G.
Dattoli
,
E.
Di Palma
,
L.
Giannessi
,
A.
Petralia
,
C.
Ronsivalle
,
I.
Spassovsky
,
V.
Surrenti
,
L. A.
Gizzi
,
L.
Labate
,
T.
Levato
, and
J. V.
Rau
, “
SPARC_LAB present and future
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
309
,
183
188
(
2013
).
16.
M. A.
Gigosos
and
A.
Manuel
, “
Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics
,”
Spectrochim. Acta Part B
58
,
1489
1504
(
2003
).
17.
F.
Filippi
,
M. P.
Anania
,
A.
Biagioni
,
E.
Chiadroni
,
A.
Cianchi
,
M.
Ferrario
,
A.
Mostacci
,
L.
Palumbo
, and
A.
Zigler
, “
Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments
,”
J. Instrum.
11
(
09
),
C09015
(
2016
).
18.
F.
Filippi
,
M. P.
Anania
,
E.
Brentegani
,
A.
Biagioni
,
A.
Cianchi
,
E.
Chiadroni
,
M.
Ferrario
,
R.
Pompili
,
S.
Romeo
, and
A.
Zigler
, “
Gas-filled capillaries for plasma-based accelerators
,”
J. Phys: Conf. Series
874
,
1731
1733
(
2017
).
19.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion Plasma Physics
, 2nd ed. (
Springer
,
1984
).
20.
M. P.
Anania
,
A.
Biagioni
,
E.
Chiadroni
,
A.
Cianchi
,
M.
Croia
,
A.
Curcio
,
D.
Di Giovenale
,
G. P.
Di Pirro
,
F.
Filippi
,
A.
Ghigo
,
V.
Lollo
,
S.
Pella
,
R.
Pompili
,
S.
Romeo
, and
M.
Ferrario
, “
Plasma production for electron acceleration by resonant plasma wave
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
829
,
254
259
(
2016
).
21.
A. J.
Gonsalves
,
T.
Rowlands-Rees
,
B.
Broks
,
J.
van der Mullen
, and
S.
Hooker
, “
Transverse interferometry of a hydrogen-filled capillary discharge waveguide
,”
Phys. Rev. Lett.
98
(
2
),
025002
(
2007
).
You do not currently have access to this content.