The mobilisation of dust is a key security issue in nuclear and industrial plants because it can provoke both explosions (in particular temperature and pressure conditions) and dangerous radioactive releases. This work is focused on the tungsten dust resuspension inside small tank for aerosol removal and DUST (STARDUST)-Upgrade, an experimental facility used to reproduce different conditions typical of the loss of vacuum accidents. In this paper, the authors present the facility and the materials used to mount the experimental setup together with the methods and algorithms implemented to track the dust velocity vectors. Tungsten dust is also analyzed through scanning electron microscopy and X-ray diffraction to find some correlation between the variation of the dust morphology, due to the different experimental conditions, with the dust mobilisation paths. The materials and methods together with the experimental results are analyzed and discussed to demonstrate the implementation with the shadow tracking setup presented in the previous facility STARDUST.

1.
R. K.
Eckhoff
,
Dust Explosions in the Process Industries
(
Gulf Professional Publishing
,
2003
), ISBN: 978-0-7506-7602-1.
2.
J.
Giby
and
CSB Hazard Investigation Team
, “
Combustible dusts: A serious industrial hazard
,”
J. Hazard. Mater.
142
(
3
),
589
591
(
2007
).
3.
OSHA fact sheet, “Occupational Safety and Health Administration (OSHA), Hazard Alert: Combustible Dust Explosion,” DSG 12 1–2,
2014
.
4.
R.
Eckhoff
, “
Current status and expected future trends in dust explosion research
,”
J. Loss Prev. Process Ind.
18
,
225
237
(
2005
).
5.
T.
Abbasi
and
S.
Abbasi
, “
Dust explosions-cases, causes, consequences, and control
,”
J. Hazard. Mater.
140
(
1-2
),
7
44
(
2007
).
6.
Dust Explosions — The basics [Online]. Available: http://www.dustexplosion.info/dust%20explosions%20-%20the%20basics.htm.
7.
R. K.
Eckhoff
, “
Prevention and mitigation of dust explosions in the process industries: A survey of recent research and development
,”
J. Loss Prev. Process. Ind.
9
(
1
),
3
20
(
1996
).
8.
W.
Gao
,
T.
Mogi
,
J.
Sun
,
J.
Yu
, and
R.
Dobashi
, “
Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions
,”
Powder Technol.
249
,
168
174
(
2013
).
9.
L. A.
Poggi
,
P.
Gaudio
,
R.
Rossi
,
J.-F.
Ciparisse
, and
A.
Malizia
, “
Non-invasive assessment of dust concentration and relative dustiness in a dust cloud mobilized by a controlled air inlet inside STARDUST-U facility
,”
Reliab. Eng. Syst. Saf.
167
,
527
535
(
2017
).
10.
R.
Zalosh
, “
DUST explosion
,” in
SPFE Handbook of Fire Protection Engineering
, 5th ed. (
2016
), pp.
2766
2791
.
11.
N.
Kuai
,
W.
Huang
,
B.
Du
,
J.
Yuan
, and
Z.
Li
, “
Experiment-based investigations on the effect of ignition energy on dust explosion behaviours
,”
J. Loss Prev. Process. Ind.
26
,
869
877
(
2013
).
12.
I.
Liebman
,
R. S.
Conti
, and
K. L.
Cashdollar
, “
Dust cloud concentration probe
,”
Rev. Sci. Instrum.
48
,
1314
(
1977
).
13.
U.S. Chemical Safety and Hazard Investigation Board
, “
Investigation report: Sugar dust explosion and fire
,”
September 2009
.
14.
U.S. Chemical Safety and Hazard Investigation Board
, “
Investigation digest — Dust explosion at west pharmaceutical services
,”
April 2005
.
15.
R.
Eckhoff
, “
Understanding dust explosions. The role of powder science and technology
,”
J. Loss Prev. Process. Ind.
22
,
105
(
2009
).
16.
J.
Winter
and
G.
Gebauer
, “
Dust in magnetic confinement fusion devices and its impact on plasma operation
,”
J. Nucl. Mater.
266-269
,
228
233
(
1999
).
17.
J.
Winter
, “
Dust: A new challenge in nuclear fusion research
,”
Phys. Plasma
7
,
3862
3866
(
2000
).
18.
G.
Federici
 et al, “
Plasma-material interactions in current tokamaks and their implications for next step fusion reactors
,”
Nucl. Fusion
41
,
1967
(
2001
).
19.
W. J.
Carmack
,
R. A.
Anderl
,
R. J.
Pawelko
,
G. R.
Smolik
, and
K. A.
McCarthy
, “
Characterization and analysis of dusts produced in three experimental tokamaks: TFTR, DIII-D, and Alcator C-Mod
,”
Fusion Eng. Des.
51-52
,
477
484
(
2000
).
20.
A.
Novokhatsky
,
A.
Gorodetsky
,
V.
Gusev
,
A.
Zakharov
, and
R.
Zalavutdinov
, “
Structure and chemical composition of magnetic dust formed in Globus-M Tokamak
,” in
38th EPS Conference on Plasma Physics
,
2011
.
21.
K.
McCarthy
,
D.
Petti
,
W.
Carmack
, and
G.
Smolik
, “
The safety implications of tokamak dust size and surface area
,”
Fusion Eng. Des.
42
,
45
52
(
1998
).
22.
J.
Vallory
,
H.
Boyer
,
F.
Moreno
, and
D.
Kadri
, “
In vessel loss of coolant accident analysis for the JET tokamak in support of the safety case review
,”
20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference
,
2012
.
23.
J.
Winter
,
V.
Fortov
, and
A.
Nefedov
, “
Radioactive dust levitation and its consequences for fusion devices
,”
J. Nucl. Mater.
290-293
,
509
512
(
2001
).
24.
A.
Malizia
,
L. A.
Poggi
,
J.-F.
Ciparisse
,
R.
Rossi
,
C.
Bellecci
, and
P.
Gaudio
, “
A review of dangerous dust in fusion reactors: From its creation to its resuspension in case of LOCA and LOVA
,”
Energies
9
(
8
),
578
(
2016
).
25.
K.
Takase
,
T.
Kunugi
, and
M.
Ogawa
, “
Exchange flow characteristics in a tokamak vacuum vessel of fusion reactor under the loss-of-vacuum conditions
,”
J. Fusion Energy
16
,
189
194
(
1997
).
26.
P.
Gaudio
,
A.
Malizia
,
M.
Camplani
,
F.
Barbato
,
L.
Antonelli
,
M.
Gelfusa
,
M. D.
Vecchio
,
L.
Salgado
,
C.
Bellecci
, and
M.
Richetta
, “
Shadowgraph technique applied to STARDUST facility for dust tracking: First results
,”
Phys. Procedia
62
,
97
101
(
2015
).
27.
C. E.
Brennen
,
Fundamentals of Multiphase Flows
(
Cambridge University Press
,
Pasadena, California
,
2005
).
28.
R.
Alexander
and
H. P.
Klug
, “
Determination of crystalline size with the x-ray spectrometer
,”
J. Appl. Phys.
21
,
137
(
1950
).
29.
O. G.
Chkhetiani
,
E. B.
Gledzer
,
M. S.
Artamonova
, and
M. A.
Iordanskii
, “
Dust resuspension under weak wind conditions: Direct observations and model
,”
Atmos. Chem. Phys.
12
,
5147
5162
(
2012
).
30.
F.
Hauert
,
A.
Vogl
, and
S.
Radandt
, “
Dust cloud characterization and the influence on the pressure-time-history in silos
,”
Process Saf. Prog.
15
,
178
(
1996
).
31.
D.
Leighton
and
A.
Acrivos
, “
Viscous resuspension
,”
Chem. Eng. Sci.
41
(
6
),
1377
1388
(
1986
).
32.
C.
Murillo
,
O.
Dufand
,
N.
Bardin-Monnier
,
O.
Lopez
,
F.
Munoz
, and
L.
Perrin
, “
Dust explosions: CFD modeling as a tool to characterize the relevant parameters of the dust dispersion
,”
Chem. Eng. Sci.
104
,
103
116
(
2013
).
33.
M.
Camplani
,
A.
Malizia
,
M.
Gelfusa
,
F.
Barbato
,
L.
Antonelli
,
L. A.
Poggi
,
J. F.
Ciparisse
,
L.
Salgado
,
M.
Richetta
, and
P.
Gaudio
, “
Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant
,”
Rev. Sci. Instrum.
87
(
1
),
013504
(
2016
).
34.
F.
Zhanf
,
M.
Reeks
, and
M. P.
Kissane
, “
Particle resuspension in turbulent boundary layers and the influence of non-Gaussian removal forces
,”
J. Aerosol Sci.
58
,
103
(
2012
).
35.
S.
Baker
and
I.
Matthews
, “
Lucas-Kanade 20 years on: A unifying framework
,”
Int. J. Comput. Vision
56
(
3
),
221
255
(
2004
).
36.
B. D.
Lucas
and
T.
Kanade
, “
An iterative image registration technique with an application to stereo vision
,” in
Proceedings of Imaging Understanding Workshop
(
1981
), pp.
121
130
.
37.
R.
Rossi
,
A.
Malizia
,
L. A.
Poggi
,
E.
Peluso
, and
P.
Gaudio
, “
Flow motion and dust tracking software for PIV and dust PTV
,”
J. Failure Anal. Prev.
16
,
951
962
,
2016
.
38.
R.
Yegavian
,
B.
Leclaire
,
F.
Champagnat
,
C.
Illoul
, and
G.
Losfeld
, “
Lucas–Kanade fluid trajectories for time-resolved PIV
,”
Meas. Sci. Technol.
27
(
8
),
084004
(
2016
).
39.
J.
Bouguet
,
Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker Description of the Algorithm
(
Intel Corporation–Microprocessor Research Labs
,
2000
).
40.
I.
Lupelli
,
A.
Malizia
,
M.
Richetta
,
L. A.
Poggi
,
J.
Ciparisse
,
M.
Gelfusa
, and
P.
Gaudio
, “
Simulations and experiments to reach numerical multiphase informations for security analysis on large volume vacuum systems like tokamaks
,”
J. Fusion Energy
34
(
5
),
959
978
(
2015
).
41.
P.
Gaudio
,
A.
Malizia
, and
I.
Lupelli
, “
Experimental and numerical analysis of dust resuspension for supporting chemical and radiological risk assessment in a nuclear fusion device
,” in
International Conference on Mathematical Models for Engineering Science—Proceedings 2010, MMES’10
(
Puerto de la Cruz, Tenerife, Spain
), pp.
134
147
.
You do not currently have access to this content.