The Transverse Energy Spread Spectrometer (TESS) was designed primarily to study the mean transverse energy spread of electrons emitted from photocathode electron sources at both room and liquid nitrogen temperatures as a function of quantum efficiency through analysis of the photoemission footprint. By reconfiguring the potentials applied to different detector elements, TESS can also be used to measure the mean longitudinal energy spread of photoemitted electrons. Initial plans were to use electrostatic wire meshes as a retarding element which prevents the detection of electrons with insufficient energy to overcome a variable potential barrier. However, this method has proved impractical and a new method has been proposed in which the photocathode bias potential is swept (effectively from a state of no electron emission to full emission) and the emitted photocurrent is then detected by using a photoemitted charge collector. In this article, we present the TESS set-up and analyze this new method to measure the longitudinal energy distribution curve. Experimental results are presented and compared to simulated results by utilising a custom designed tracking code.

1.
G.
Penco
,
E.
Allaria
,
L.
Badano
,
P.
Cinquegrana
,
P.
Craievich
,
M.
Danailov
,
A.
Demidovich
,
R.
Ivanov
,
A.
Lutman
,
L.
Rumiz
,
P.
Sigalotti
,
C.
Spezzani
,
M.
Trovò
, and
M.
Veronese
, “
Optimization of a high brightness photoinjector for a seeded FEL facility
,”
J. Instrum.
8
(
05
),
P05015
(
2013
).
2.
D. H.
Dowell
,
I.
Bazarov
,
B.
Dunham
,
K.
Harkay
,
C.
Hernandez-Garcia
,
R.
Legg
,
H.
Padmore
,
T.
Rao
,
J.
Smedley
, and
W.
Wan
, “
Cathode R&D for future light sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
622
,
685
697
(
2010
).
3.
S.
Zwickler
,
D.
Habs
,
P.
Krause
,
S.
Pastuszka
,
D.
Schwalm
,
A.
Wolf
, and
A. S.
Terekhov
, “
Energy analysis of electrons emitted by a semiconductor photocathode
,” in
Proceedings of the Workshop on Photocathodes for Polarized Electron Sources for Accelerators, Stanford 1993
(
SLAC, Stanford, California
,
1994
), pp.
446
455
.
4.
U.
Weigel
, “
Cold intense electron beams from gallium arsenide photocathodes
,” Ph.D. thesis,
University of Heidelberg
,
2003
.
5.
T.
Vecchione
,
I.
Ben-Zvi
,
D. H.
Dowell
,
J.
Feng
,
T.
Rao
,
J.
Smedley
,
W.
Wan
, and
H. A.
Padmore
, “
A low emittance and high efficiency visible light photocathode for high brightness accelerator-based x-ray light sources
,”
Appl. Phys. Lett.
99
(
3
),
034103
(
2011
).
6.
S.
Karkare
,
L.
Cultrera
,
Y.-W.
Hwang
,
R.
Merluzzi
, and
I.
Bazarov
, “
2-D energy analyzer for low energy electrons
,”
Rev. Sci. Instrum.
86
(
3
),
033301
(
2015
).
7.
L.
Jones
,
R.
Cash
,
B.
Fell
,
J.
McKenzie
,
K.
Middleman
,
B.
Militsyn
,
H.
Scheibler
,
D.
Gorshkov
, and
A.
Terekhov
, “
The commissioning of TESS: An experimental facility for measuring the electron energy distribution from photocathodes
,” in
Proceedings of FEL2013, 2013
.
8.
L. B.
Jones
,
H. E.
Scheibler
,
D. V.
Gorshkov
,
A. S.
Terekhov
,
B. L.
Militsyn
, and
T. C. Q.
Noakes
, “
Evolution of the transverse and longitudinal energy distributions of electrons emitted from a GaAsP photocathode as a function of its degradation state
,”
J. Appl. Phys.
121
(
22
),
225703
(
2017
).
9.
See http://www.pco.de for PCO.
10.
See http://www.tamron.co.uk for Tamron.
11.
See http://www.thinksrs.com/ for Stanford Research Systems.
12.
J.
Clarke
, “
The conceptual design of 4GLS at Daresbury Laboratory
,” in
Proceedings of EPAC 2006
(
JACoW
,
2006
), pp.
181
183
.
13.
M.
Poole
and
E.
Seddon
, “
4GLS and the prototype energy recovery linac project at Daresbury 4GLS
,” in
Proceedings of 2005 Particle Accelerator Conference
(
JACoW
,
2005
), pp.
455
457
.
14.
B.
Militsyn
,
I.
Burrows
,
R.
Cash
,
B.
Fell
,
L.
Jones
,
J.
McKenzie
,
K.
Middleman
,
S.
Kosolobov
,
H.
Scheibler
, and
A.
Terekhov
, “
Design of an upgrade to the ALICE photocathode electron gun
,” in
Proceedings of 2008 European Particle Accelerator Conference
(
JACoW
,
2008
), pp.
235
237
.
15.
B.
Militsyn
,
I.
Burrows
,
R.
Cash
,
B.
Fell
,
L.
Jones
,
J.
McKenzie
,
K.
Middleman
,
H.
Scheibler
, and
A.
Terekhov
, “
High voltage DC photoinjector development at Daresbury Laboratory
,” in
ICFA Beam Dynamics Newsletter
,
2010
.
16.
B.
Militsyn
,
I.
Burrows
,
R.
Cash
,
B.
Fell
,
L.
Jones
,
J.
McKenzie
,
K.
Middleman
,
H.
Scheibler
, and
A.
Terekhov
, “
First results from the III-V photocathode preparation facility for the ALICE ERL photoinjector
,” in
Proceedings of IPAC’10
,
Kyoto, Japan
,
2010
.
17.
See www.comsol.com/ for Comsol Multiphysics.
18.
See http://mathworks.com/ for Mathworks.
19.
L. J.
Devlin
,
O.
Karamyshev
, and
C. P.
Welsch
, “
Charged particle tracking through electrostatic wire meshes using the finite element method
,”
Phys. Plasmas
23
(
6
),
063110
(
2016
).
20.
L. J.
Devlin
, “
Studies towards an enhanced understanding of electron beams and their diagnostics
,” Ph.D. thesis,
The University of Liverpool
,
2016
.
21.
See www.operafea.com/ for Opera.
22.
L. J.
Devlin
,
O.
Karamyshev
,
C. P.
Welsch
,
L. B.
Jones
,
B. L.
Militsyn
, and
T. C. Q.
Noakes
, “
Measurements of the longitudinal energy distribution of low energy electrons
,” in
Proceedings of IPAC 2014
(
JACoW
,
2014
), pp.
720
723
.
23.
L. B.
Jones
,
S. A.
Rozhkov
,
V. V.
Bakin
,
S. N.
Kosolobov
,
B. L.
Militsyn
,
H. E.
Scheibler
,
S. L.
Smith
, and
A. S.
Terekhov
, “
Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source
,”
AIP Conf. Proc.
1149
,
1057
1061
(
2009
).
24.
D.
Orlov
,
M.
Hoppe
,
D.
Schwalm
,
A.
Terekhov
, and
A.
Wolf
, “
Longitudinal and transverse energy distributions of electrons emitted from GaAs(Cs, O)
,”
Appl. Phys. Lett.
78
(
18
),
2721
2723
(
2001
).
You do not currently have access to this content.