Under ultra-low pressure, an electron beam is generated by the microwave electron cyclotron resonance plasma with a permanent magnet. By means of the Hall coil and Miller ampere meter, two electron current signals at the end of the extraction anode (Ia) and the sample holder (Is) were measured. The influences of discharge power, gas pressure, and accelerating voltage on the electron beam current Is were analyzed. The experimental results indicated that the extracted electron current can reach 75.1 mA at a gas pressure of 1.4 × 10−3 Pa, an accelerating voltage of 8 kV, and an orifice size of 3 mm in diameter. In order to estimate the focusing properties of the electron beam by the beam-focusing coil, the influence of the coil current on the size of the electron beam spot on the sample holder was presented and discussed. The intrinsic mechanism of electron beam extraction and propagation is revealed by numerical simulation.

1.
Plasma Cathode Electron Sources: Physics, Technology, Applications
, edited by
E. M.
Oks
(
Wiley VCH
,
2009
).
2.
Y. E.
Krasik
 et al.,
Phys. Plasmas
16
(
5
),
057103
(
2009
).
3.
I.
Osipov
and
N.
Rempe
,
Rev. Sci. Instrum.
71
(
4
),
1638
(
2000
).
4.
S. F.
Gnyusov
,
V. G.
Durakov
, and
A. À.
Ignatov
,
IEEE Trans. Plasma Sci.
41
(
8
),
2196
2200
(
2013
).
5.
D. M.
Goebel
,
R. W.
Schumacher
, and
R. L.
Eisenhart
,
IEEE Trans. Plasma Sci.
26
(
3
),
354
365
(
1998
).
6.
G. E.
Ozur
 et al.,
Laser Part. Beams
21
(
02
),
157
174
(
2003
).
7.
M.
Maulois
 et al.,
Phys. Plasmas
23
(
4
),
043501
(
2016
).
8.
Y.
Takao
 et al.,
Jpn. J. Appl. Phys., Part 2
55
(
7
),
07LD09
(
2016
).
9.
D.
Pedrini
 et al., in
64th International Astronautical Congress
(
Acta Astronautica
,
2015
), Vol. 106, pp.
170
178
.
10.
V. E.
Messerle
and
A. B.
Ustimenko
,
High. Temp. Mater. Processes
16
(
3
),
213
221
(
2012
).
11.
C. D.
Cothran
 et al.,
Surf. Coat. Technol.
267
,
111
116
(
2015
).
12.
S. Y.
Kornilov
,
I. V.
Osipov
, and
N. G.
Rempe
,
Instrum. Exp. Tech.
52
(
3
),
406
411
(
2009
).
13.
S.
Muhl
 et al.,
Thin Solid Films
579
,
174
198
(
2015
).
14.
S. D.
Walton
 et al.,
ECS J. Solid State Sci. Technol.
4
(
6
),
N5033
N5040
(
2015
).
15.
S.
Harada
 et al.,
Appl. Phys. Lett.
105
(
19
),
194101
(
2014
).
16.
K.
Takahashi
,
A.
Komuro
, and
A.
Ando
,
Appl. Phys. Lett.
105
(
19
),
193503
(
2014
).
17.
B.
Longmier
 et al.,
Rev. Sci. Instrum.
77
(
11
),
113504
(
2006
).
18.
A.
Vizir
 et al., in
IEEE International Conference on Plasma Science
(
IEEE
,
2004
), Vol. 286.
19.
J.
Xu
 et al.,
Vacuum
143
,
407
411
(
2017
).
20.
S. T.
Surzhikov
,
Tech. Phys. Lett.
43
(
2
),
169
172
(
2017
).
21.
E. M.
Oks
,
M. V.
Shandrikov
, and
A. V.
Vizir
,
Rev. Sci. Instrum.
87
(
2
),
02B703
(
2016
).
22.
M.
Light
 et al.,
IEEE Trans. Plasma Sci.
37
(
2
),
317
326
(
2009
).
23.
B. R.
Weatherford
,
J. E.
Foster
, and
H.
Kamhawi
,
Rev. Sci. Instrum.
82
(
9
),
093507
(
2011
).
24.
H.
Nihei
 et al.,
Jpn. J. Appl. Phys., Part 2
29
(
5
),
L822
L825
(
1990
).
25.
S.
Matteson
and
M. A.
Nicolet
,
Nucl. Instrum. Methods
160
(
2
),
301
311
(
1979
).
You do not currently have access to this content.