Diagnosing fast electrons is important to understand the physics underpinning intense laser-produced plasmas. Here, we demonstrate experimentally that a Cherenkov radiation-based optical fibre can serve as a reliable diagnostic to characterize the fast electrons escaping from solid targets irradiated by ultra-intense laser pulses. Using optical fibre loops, the number and angular distributions of the escaping electrons are obtained. The data agree well with measurements made using image plate stacks. The optical fibre can be operated at high-repetition rates and is insensitive to x-rays and ion beams, which makes it advantageous over other routinely used fast electron diagnostics in some aspects.

1.
M. H.
Key
 et al,
Phys. Plasmas
5
,
1966
(
1998
).
2.
P.
Gibbon
and
E.
Forster
,
Plasma Phys. Controlled Fusion
38
,
769
(
1996
).
3.
J. J.
Honrubia
and
J.
Meyer-Ter-Vehn
,
Plasma Phys. Controlled Fusion
51
,
014008
(
2009
).
4.
A. R.
Bell
and
R. J.
Kingham
,
Phys. Rev. Lett.
91
,
035003
(
2003
).
5.
Y.-T.
Li
,
X. H.
Yuan
,
M. H.
Xu
 et al,
Phys. Rev. Lett.
96
,
165003
(
2006
).
6.
Z.-M.
Sheng
,
Y.
Sentoku
,
K.
Mima
 et al,
Phys. Rev. Lett.
85
,
5340
(
2000
).
7.
D. R.
Rusby
,
L. A.
Wilson
,
R. J.
Gray
 et al,
J. Plasma Phys.
81
,
475810505
(
2015
).
8.
P.
Gibbon
and
A. R.
Bell
,
Phys. Rev. Lett.
68
,
1535
(
1992
).
9.
S. C.
Wilks
and
W. L.
Kruer
,
IEEE J. Quantum Electron.
33
,
1954
(
1997
).
11.
S. C.
Wilks
,
W. L.
Kruer
,
M.
Tabak
, and
A. B.
Langdon
,
Phys. Rev. Lett.
69
,
1383
(
1992
).
12.
D. F.
Cai
,
Y. Q.
Gu
,
Z. J.
Zheng
 et al,
Phys. Plasmas
10
,
3265
(
2003
).
13.
M. N.
Quinn
,
X. H.
Yuan
,
X. X.
Lin
 et al,
Plasma Phys. Controlled Fusion
53
,
025007
(
2011
).
14.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
 et al,
Phys. Plasmas
8
,
542
(
2001
).
15.
G. Q.
Liao
,
Y. T.
Li
,
Y. H.
Zhang
 et al,
Phys. Rev. Lett.
116
,
205003
(
2016
).
16.
J. S.
Green
,
M.
Borghesi
,
C. M.
Brenner
 et al,
Proc. SPIE
8079
,
807919
(
2011
).
17.
C.
Danson
,
D.
Hillier
,
N.
Hopps
 et al,
High Power Laser Sci. Eng.
3
,
e3
(
2015
).
18.
I. J.
Paterson
,
R. J.
Clarke
,
N. C.
Woolsey
 et al,
Meas. Sci. Technol.
19
,
095301
(
2008
).
19.
Y.
Glinec
,
J.
Faure
,
A.
Guemnietafo
 et al,
Rev. Sci. Instrum.
77
,
103301
(
2006
).
20.
G. C.
Tyrrell
,
Nucl. Instrum. Methods Phys. Res., Sect. A
546
,
180
(
2005
).
22.
B.
Lee
,
K. W.
Jang
,
H. C.
Dong
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
579
,
344
(
2007
).
23.
F.
Brandl
,
G.
Pretzler
,
D.
Habs
 et al,
Europhys. Lett.
61
,
632
(
2003
).
24.
H.
Habara
,
K.
Ohta
,
K. A.
Tanaka
 et al,
Phys. Rev. Lett.
104
,
055001
(
2010
).
25.
Y. C.
Wang
,
Y. W.
Shi
, and
H. T.
Jiang
,
Proc. SPIE
1572
(
1991
).
26.
G.
Hill
,
The Cable and Telecommunications Professionals’ Reference
, 3rd ed. (
Focal Press
,
2008
).
28.
M. J.
Mead
 et al,
Rev. Sci. Instrum.
75
,
4225
(
2004
).
29.
L.
Swiderski
,
M.
Moszynski
,
A.
Syntfeldkazuch
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
749
,
68
(
2014
).
30.
D.
Marcuse
,
J. Opt. Soc. Am.
66
,
216
(
1976
).
31.
S.
Moon
and
Z.
Chen
,
Appl. Opt.
51
,
8262
(
2012
).
You do not currently have access to this content.