Machine learning classification and regression algorithms were applied to calibrate the localization errors of a time-difference-of-arrival (TDOA)-based acoustic sensor array used for tracking salmon passage through a hydroelectric dam on the Snake River, Washington, USA. The locations of stationary and mobile acoustic tags were first tracked using the approximate maximum likelihood algorithm. Next, ensembles of classification trees successfully identified and filtered data points with large localization errors. This prefiltering step allowed the creation of a machine-learned regression model function, which decreased the median distance error by 50% for the stationary tracks and by 34% for the mobile tracks. It also extended the previous range of sub-meter localization accuracy from 100 m to 250 m horizontal distance from the dam face (the receivers). Median distance errors in the depth direction were especially decreased, falling from 0.49 m to 0.04 m in the stationary tracks and from 0.38 m to 0.07 m in the mobile tracks. These methods would have application to the calibration of error in any TDOA-based sensor network with a steady environment and array configuration.

1.
N. H.
Kussat
,
C. D.
Chadwell
, and
R.
Zimmerman
, “
Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements
,”
IEEE J. Oceanic Eng.
30
,
153
164
(
2005
).
2.
F. N.
Spiess
 et al., “
Precise GPS/acoustic positioning of seafloor reference points for tectonic studies
,”
Phys. Earth Planet. Inter.
108
,
101
112
(
1998
).
3.
M. A.
Weiland
 et al., “
A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation
,”
Sensors
11
,
5645
5660
(
2011
).
4.
W.
Nehlsen
,
J. E.
Williams
, and
J. A.
Lichatowich
, “
Pacific salmon at the crossroads: Stocks at risk from California, Oregon, Idaho, and Washington
,”
Fisheries
16
,
4
21
(
1991
).
5.
C.
Macilwain
, “
Sceptics and salmon challenge scientists
,”
Nature
385
,
668
(
1997
).
6.
J.
Wakefield
, “
Record salmon populations disguise uncertain future
,”
Nature
411
,
226
(
2001
).
7.
R. A.
Lovett
, “
As salmon stage disappearing act, dams may too
,”
Science
284
,
574
575
(
1999
).
8.
B. J.
Burke
 et al., “
Multivariate models of adult Pacific salmon returns
,”
PLoS One
8
,
e54134
(
2013
).
9.
G. F.
Čada
, “
The development of advanced hydroelectric turbines to improve fish passage survival
,”
Fisheries
26
,
14
23
(
2001
).
10.
M.
Odeh
and
G.
Sommers
, “
New design concepts for fish friendly turbines
,”
Int. J. Hydropower Dams
7
,
64
70
(
2000
).
11.
D. A.
Neitzel
 et al., “
Survival estimates for juvenile fish subjected to a laboratory-generated shear environment
,”
Trans. Am. Fish. Soc.
133
,
447
454
(
2004
).
12.
Z.
Deng
 et al., “
Evaluation of fish-injury mechanisms during exposure to turbulent shear flow
,”
Can. J. Fish. Aquat. Sci.
62
,
1513
1522
(
2005
).
13.
Z.
Deng
,
T. J.
Carlson
,
G. R.
Ploskey
,
M. C.
Richmond
, and
D. D.
Dauble
, “
Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines
,”
Ecol. Modell.
208
,
165
176
(
2007
).
14.
J.
Metcalfe
and
G.
Arnold
, “
Tracking fish with electronic tags
,”
Nature
387
,
665
666
(
1997
).
15.
J.-M.
Roussel
,
A.
Haro
, and
R.
Cunjak
, “
Field test of a new method for tracking small fishes in shallow rivers using passive integrated transponder (PIT) technology
,”
Can. J. Fish. Aquat. Sci.
57
,
1326
1329
(
2000
).
16.
C. G.
Meyer
,
K. N.
Holland
,
B. M.
Wetherbee
, and
C. G.
Lowe
, “
Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve
,”
Environ. Biol. Fishes
59
,
235
242
(
2000
).
17.
S. J.
Cooke
 et al., “
Tracking animals in freshwater with electronic tags: Past, present and future
,”
Anim. Biotelem.
1
,
5
(
2013
).
18.
V.
Tsvetkov
,
D.
Pavlov
, and
V.
Nezdoliy
, “
Changes of hydrostatic pressure lethal to young of some freshwater fish
,”
J. Ichthyol.
12
,
307
318
(
1972
).
19.
R. S.
Brown
 et al., “
Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law
,”
Fish. Res.
121-122
,
43
50
(
2012
).
20.
G. L.
Rutz
,
M. D.
Sholtis
,
N. S.
Adams
, and
J. W.
Beeman
, “
Investigation of methods for successful installation and operation of juvenile salmon acoustic telemetry system (JSATS) hydrophones in the Willamette River, Oregon, 2012
,” U.S. Geological Survey Report 2014-1112,
2014
.
21.
E. L.
Rechisky
,
D. W.
Welch
,
A. D.
Porter
,
M. C.
Jacobs-Scott
, and
P. M.
Winchell
, “
Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6883
6888
(
2013
).
22.
G. A.
Mcmichael
 et al., “
The juvenile salmon acoustic telemetry system: A new tool
,”
Fisheries
35
,
9
22
(
2010
).
23.
C. C.
Coutant
and
R. R.
Whitney
, “
Fish behavior in relation to passage through hydropower turbines: A review
,”
Trans. Am. Fish. Soc.
129
,
351
380
(
2000
).
24.
Z.
Deng
,
T. J.
Carlson
,
J. P.
Duncan
,
M. C.
Richmond
, and
D. D.
Dauble
, “
Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam
,”
J. Renewable Sustainable Energy
2
,
053104
(
2010
).
25.
X.
Li
,
Z. D.
Deng
,
L. T.
Rauchenstein
, and
T. J.
Carlson
, “
Contributed review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements
,”
Rev. Sci. Instrum.
87
,
041502
(
2016
).
26.
X.
Li
 et al., “
A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters
,”
Sci. Rep.
4
,
7215
(
2014
).
27.
X.
Li
 et al., “
Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: Implications for turbine-passage survival
,”
Conserv. Physiol.
3
(
1
),
cou064
(
2015
).
28.
D. A.
Tran
,
X.
Nguyen
, and
T.
Nguyen
, “
Machine learning based localization
,” in
Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking
(
IGI Global
,
2009
), pp.
302
320
.
29.
M. A.
Alsheikh
,
S.
Lin
,
D.
Niyato
, and
H. P.
Tan
, “
Machine learning in wireless sensor networks: Algorithms, strategies, and applications
,”
IEEE Commun. Surv. Tutorials
16
,
1996
2018
(
2014
).
30.
M.
Di
and
E. M.
Joo
, “
A survey of machine learning in wireless sensor networks from networking and application perspectives
,” in
2007 6th International Conference on Information, Communications and Signal Processing
(
IEEE
,
2007
), pp.
1
5
.
31.
H.
Wymeersch
,
S.
Maranò
,
W. M.
Gifford
, and
M. Z.
Win
, “
A machine learning approach to ranging error mitigation for UWB localization
,”
IEEE Trans. Commun.
60
,
1719
1728
(
2012
).
32.
P.
Singh
and
S.
Agrawal
, “
TDOA based node localization in WSN using neural networks
,” in
2013 International Conference on Communication Systems and Network Technologies (CSNT)
(
IEEE
,
2013
), pp.
400
404
.
33.
A.
Zielesny
,
From Curve Fitting to Machine Learning: An Illustrative Guide to Scientific Data Analysis and Computational Intelligence
(
Springer
,
2011
), pp.
237
242
.
34.
J.
Skalski
 et al., “
BiOp performance testing: Passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at Little Goose dam, 2012
,” Report PNNL-22140,
Pacific Northwest National Laboratory
,
Richland, Washington
,
2013
.
35.
Z. D.
Deng
 et al., “
A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 2. Three-dimensional tracking and passage outcomes
,”
Sensors
11
,
5661
5676
(
2011
).
36.
J.
Ingraham
 et al., “
A fast and accurate decoder for underwater acoustic telemetry
,”
Rev. Sci. Instrum.
85
,
074903
(
2014
).
37.
Z.
Deng
,
M.
Weiland
,
T.
Carlson
, and
M. B.
Eppard
, “
Design and instrumentation of a measurement and calibration system for an acoustic telemetry system
,”
Sensors
10
,
3090
3099
(
2010b
).
38.
Y.-T.
Chan
,
H. Y. C.
Hang
, and
P.-C.
Ching
, “
Exact and approximate maximum likelihood localization algorithms
,”
IEEE Trans. Veh. Technol.
55
,
10
16
(
2006
).
39.
J. L.
Spiesberger
and
K. M.
Fristrup
, “
Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography
,”
Am. Nat.
135
,
107
153
(
1990
).
40.
M.
Wahlberg
,
B.
Møhl
, and
P. T.
Madsen
, “
Estimating source position accuracy of a large-aperture hydrophone array for bioacoustics
,”
J. Acoust. Soc. Am.
109
,
397
406
(
2001
).
41.
R.
Bucher
and
D.
Misra
, “
A synthesizable VHDL model of the exact solution for three-dimensional hyperbolic positioning system
,”
VLSI Des.
15
,
507
520
(
2002
).
42.
J. E.
Ehrenberg
and
T. W.
Steig
, “
A method for estimating the ‘position accuracy’ of acoustic fish tags
,”
ICES J. Mar. Sci.
59
,
140
149
(
2002
).
43.
H.
Ren
 et al., “
Localization of Southern Resident killer whales using two star arrays to support marine renewable energy
,” in
Oceans 2012
(
IEEE
,
2012
), pp.
1
7
.
44.
G.
Mao
,
B.
Fidan
, and
B. D.
Anderson
, “
Wireless sensor network localization techniques
,”
Comput. Networks
51
,
2529
2553
(
2007
).
45.
W.
Marczak
, “
Water as a standard in the measurements of speed of sound in liquids
,”
J. Acoust. Soc. Am.
102
,
2776
2779
(
1997
).
46.
F.
Pereira
,
T.
Mitchell
, and
M.
Botvinick
, “
Machine learning classifiers and fMRI: A tutorial overview
,”
NeuroImage
45
,
S199
S209
(
2009
).
47.
N.
Cristianini
and
J.
Shawe-Taylor
,
An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
(
Cambridge University Press
,
2000
), pp.
93
122
.
48.
M.
Warmuth
,
J.
Liao
, and
G.
Ratsch
, “
Totally corrective boosting algorithms that maximize the margin
,” in
International Conference on Machine Learning (ICML’06)
(
ACM
,
New York
,
2006
), pp.
1001
1008
.
49.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
50.
L.
Breiman
,
J.
Friedman
,
R.
Olshen
, and
C.
Stone
,
Introduction to Tree Classification in Classification and Regression Trees
(
Wadsworth
,
1984
), pp.
18
59
.
51.
W.
Au
and
D.
Herzing
, “
Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis)
,”
J. Acoust. Soc. Am.
113
,
598
604
(
2003
).
You do not currently have access to this content.