The measurement and control of trace moisture, where the water concentration is lower than 1 ppmv [−76.2 °C for the frost point (°CFP)], are essential for improving the yield rate of semiconductor devices and for ensuring their reliability. A ball surface acoustic wave (SAW) sensor with a sol-gel silica coating exhibited useful characteristics for a trace moisture analyzer (TMA) when the temperature drift of the delay time output was precisely compensated using two-frequency measurement (TFM), where the temperature-compensated relative delay time change (RDTC) was obtained by subtracting the RDTC at the fundamental frequency from that at the third harmonic frequency on an identical propagation path. However, the cost of the measurement circuit was a problem. In this study, a burst waveform undersampling (BUS) circuit based on the theory of undersampling measurement was developed as a practical means. The BUS circuit was useful for precise temperature compensation of the RDTC, and the ball SAW TMA was prototyped by calibrating the RDTC using a TMA based on cavity ring-down spectroscopy (CRDS), which is the most reliable method for trace moisture measurement. The ball SAW TMA outputted a similar concentration to that obtained by the CRDS TMA, and its response time at a set concentration in N2 with a flow rate of 1 l/min was about half that of the CRDS TMA, suggesting that moisture of −80 °CFP was measured within only 1 min. The detection limit at a signal-to-noise ratio of 3 was estimated to be 0.05 ppbv, comparable with that of the CRDS TMA. From these results, it was demonstrated that a practical ball SAW TMA can be realized using the developed BUS circuit.

1.
H.
Abe
and
H.
Kitano
,
Sens. Actuators, A
128
,
202
208
(
2006
).
2.
H. H.
Funke
,
B. L.
Grissom
,
C. E.
McGrew
, and
M. W.
Raynory
,
Rev. Sci. Instrum.
74
,
3909
3933
(
2003
).
3.
W.
Demtröder
,
Laser Spectroscopy
, 4th ed. (
Springer
,
Berlin
,
2008
), p.
22
.
4.
H.
Abe
and
H.
Kitano
,
Sens. Actuators, A
136
,
723
729
(
2007
).
5.
D. S.
Ballantine
, Jr.
,
R. M.
White
,
S. J.
Martin
,
A.
Ricco
,
E. T.
Zellers
,
G. C.
Frye
, and
H.
Wohltjen
,
Acoustic Wave Sensors Theory, Design, and Physico-Chemical Applications
(
Academic
,
New York
,
1996
), p.
4
.
6.
R.
Benyon
and
P.
Hernández
,
Int. J. Thermophys.
33
,
1438
1450
(
2012
).
7.
D. S.
Ballantine
, Jr.
,
R. M.
White
,
S. J.
Martin
,
A.
Ricco
,
E. T.
Zellers
,
G. C.
Frye
, and
H.
Wohltjen
,
Acoustic Wave Sensors Theory, Design, and Physico-Chemical Applications
(
Academic
,
New York
,
1996
), p.
81
.
8.
A. L.
Robinson
,
V.
Stavila
,
T. R.
Zeitler
,
M. I.
White
,
S. M.
Thornberg
,
J. A.
Greathouse
, and
M. D.
Allendorf
,
Anal. Chem.
84
,
7043
7051
(
2012
).
9.
K.
Yamanaka
,
S.
Ishikawa
,
N.
Nakaso
,
N.
Takeda
,
D. Y.
Sim
,
T.
Mihara
,
A.
Mizukami
,
I.
Satoh
,
S.
Akao
, and
Y.
Tsukahara
,
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
53
,
793
801
(
2006
).
10.
H.
Nagai
,
S.
Kawai
,
O.
Ito
,
T.
Oizumi
,
T.
Tsuji
,
N.
Takeda
, and
K.
Yamanaka
, in
Proceedings of the International Congresses on Acoustics (ICA 2010)
(
International Congress on Acoustics (ICA)
,
2010
), pp.
378-1
378-4
[https://www.acoustics.asn.au/conference_proceedings/ICA2010/cdrom-ICA2010/papers/p378.pdf].
11.
T.
Tsuji
,
R.
Mihara
,
T.
Saito
,
S.
Hagihara
,
T.
Oizumi
,
N.
Takeda
,
T.
Ohgi
,
T.
Yanagisawa
,
S.
Akao
,
N.
Nakaso
, and
K.
Yamanaka
,
Mater. Trans.
55
,
1040
1044
(
2014
).
12.
N.
Iwata
,
T.
Abe
,
T.
Tsuji
,
T.
Mihara
,
S.
Akao
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
46
,
4532
4536
(
2007
).
13.
S.
Akao
,
N.
Iwata
,
M.
Sakuma
,
H.
Ohnishi
,
K.
Noguchi
,
T.
Tsuji
,
N.
Nakaso
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
47
,
4086
4090
(
2008
).
14.
K.
Kobari
,
Y.
Yamamoto
,
M.
Sakuma
,
S.
Akao
,
T.
Tsuji
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
48
,
07GG13-1
07GG13-6
(
2009
).
15.
Y.
Yamamoto
,
S.
Akao
,
M.
Sakuma
,
K.
Kobari
,
K.
Noguchi
,
N.
Nakaso
,
T.
Tsuji
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
48
,
07GG12-1
07GG12-3
(
2009
).
16.
Y.
Yamamoto
,
S.
Akao
,
T.
Sakamoto
,
T.
Tsuji
,
N.
Nakaso
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
49
,
07HD14-1
07HD14-5
(
2010
).
17.
T.
Sakamoto
,
S.
Akao
,
T.
Iwaya
,
T.
Tsuji
,
N.
Nakaso
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
51
,
07GC22-1
07GC22-6
(
2012
).
18.
T.
Iwaya
,
S.
Akao
,
T.
Sakamoto
,
T.
Tsuji
,
N.
Nakaso
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
51
,
07GC24-1
07GC24-6
(
2012
).
19.
N.
Takeda
and
M.
Motozawa
,
Int. J. Thermophys.
33
,
1642
1649
(
2012
).
20.
N.
Takeda
,
T.
Oizumi
,
T.
Tsuji
,
S.
Akao
,
K.
Takayanagi
,
N.
Nakaso
, and
K.
Yamanaka
,
Int. J. Thermophys.
36
,
3440
3452
(
2015
).
21.
K.
Takayanagi
,
S.
Akao
,
T.
Yanagisawa
,
N.
Nakaso
,
Y.
Tsukahara
,
S.
Hagihara
,
T.
Oizumi
,
N.
Takeda
,
T.
Tsuji
, and
K.
Yamanaka
,
Mater. Trans.
55
,
988
993
(
2013
).
22.
S.
Hagihara
,
T.
Tsuji
,
T.
Oizumi
,
N.
Takeda
,
S.
Akao
,
T.
Ohgi
,
K.
Takayanagi
,
T.
Yanagisawa
,
N.
Nakaso
,
Y.
Tsukahara
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
53
,
07KD08-1
07KD08-5
(
2014
).
23.
T.
Nakatsukasa
,
S.
Akao
,
T.
Ohgi
,
N.
Nakaso
,
T.
Abe
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
45
,
4500
4504
(
2006
).
24.
D.
Sim
,
B.
Maxey
,
N.
Takeda
,
N.
Nakaso
,
N.
Iwata
,
T.
Tsuji
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
47
,
4070
4075
(
2008
).
25.
T.
Abe
,
N.
Iwata
,
T.
Tsuji
,
T.
Mihara
,
S.
Akao
,
K.
Noguchi
,
N.
Nakaso
,
D.-Y.
Sim
,
Y.
Ebi
,
T.
Fukiura
,
H.
Tanaka
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
46
,
4726
4728
(
2007
).
26.
S. M.
Kuo
and
B. H.
Lee
,
Real-Time Digital Signal Processing
(
Wiley
,
New York
,
2001
), p.
154
.
27.
W.
Kester
,
The Data Conversion Handbook
(
Elsevier
,
Amsterdam
,
2005
), p.
73
.
28.
T.
Tsuji
,
T.
Oizumi
,
N.
Takeda
,
S.
Akao
,
Y.
Tsukahara
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
54
,
07HD13-1
07HD13-6
(
2015
).
29.
H.
Inoue
,
K.
Kishimoto
,
T.
Nakanishi
, and
T.
Shibuya
,
Trans. Jpn. Soc. Mech. Eng. Ser. A
61
,
153
160
(
1995
) [in Japanese].
30.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge, UK
,
1992
), p.
343
.
31.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge, UK
,
1992
), p.
107
.
32.
K.
Siefering
and
W. H.
Whitlock
,
J. Vac. Sci. Technol., A
12
,
2685
2691
(
1994
).
33.
D. S.
Ballantine
, Jr.
,
R. M.
White
,
S. J.
Martin
,
A.
Ricco
,
E. T.
Zellers
,
G. C.
Frye
, and
H.
Wohltjen
,
Acoustic Wave Sensors Theory, Design, and Physico-Chemical Applications
(
Academic
,
New York
,
1996
), p.
414
.
You do not currently have access to this content.