This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

1.
E. L.
Gibb
,
D. C. B.
Whittet
,
A. C. A.
Boogert
, and
A. G. G. M.
Tielens
, “
Interstellar ice: The infrared space observatory legacy
,”
Astrophys. J., Suppl. Ser.
151
,
35
73
(
2004
).
2.
K. I.
Öberg
,
A. C. A.
Boogert
,
K. M.
Pontoppidan
,
S.
van den Broek
,
E. F.
van Dishoeck
,
S.
Bottinelli
,
G. A.
Blake
, and
N. J.
Evans
 II
, “
The Spitzer ice legacy: Ice evolution from cores to protostars
,”
Astrophys. J.
740
,
109
(
2011
).
3.
A. C. A.
Boogert
,
P. A.
Gerakines
, and
D. C. B.
Whittet
, “
Observations of the icy universe
,”
Annu. Rev. Astron. Astrophys.
53
,
541
581
(
2015
).
4.
S.
Ioppolo
,
H. M.
Cuppen
,
C.
Romanzin
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Laboratory evidence for efficient water formation in interstellar ices
,”
Astrophys. J.
686
,
1474
1479
(
2008
).
5.
N.
Miyauchi
,
H.
Hidaka
,
T.
Chigai
,
A.
Nagaoka
,
N.
Watanabe
, and
A.
Kouchi
, “
Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K
,”
Chem. Phys. Lett.
456
,
27
30
(
2008
).
6.
G. W.
Fuchs
,
H. M.
Cuppen
,
S.
Ioppolo
,
C.
Romanzin
,
S. E.
Bisschop
,
S.
Andersson
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach
,”
Astron. Astrophys.
505
,
629
639
(
2009
).
7.
S.
Ioppolo
,
Y.
van Boheemen
,
H. M.
Cuppen
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Surface formation of CO2 ice at low temperatures
,”
Mon. Not. R. Astron. Soc.
413
,
2281
2287
(
2011
).
8.
E. F.
van Dishoeck
,
E.
Herbst
, and
D. A.
Neufeld
, “
Interstellar water chemistry: From laboratory to observations
,”
Chem. Rev.
113
,
9043
9085
(
2013
).
9.
E. A.
Bergin
and
M.
Tafalla
, “
Cold dark clouds: The initial conditions for star formation
,”
Annu. Rev. Astron. Astrophys.
45
,
339
396
(
2007
).
10.
R. T.
Garrod
,
S. L.
Widicus Weaver
, and
E.
Herbst
, “
Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model
,”
Astrophys. J.
682
,
283
302
(
2008
).
11.
E.
Herbst
and
E. F.
van Dishoeck
, “
Complex organic interstellar molecules
,”
Annu. Rev. Astron. Astrophys.
47
,
427
480
(
2009
).
12.
G.
Fedoseev
,
K.-J.
Chuang
,
S.
Ioppolo
,
D.
Qasim
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Formation of glycerol through hydrogenation of CO ice under prestellar core conditions
,”
Astrophys. J.
842
,
52
(
2017
).
13.
H.
Linnartz
,
S.
Ioppolo
, and
G.
Fedoseev
, “
Atom addition reactions in interstellar ice analogues
,”
Int. Rev. Phys. Chem.
34
(
2
),
205
237
(
2015
).
14.
M. P.
Bernstein
,
J. P.
Dworkin
,
S. A.
Sandford
,
G. W.
Cooper
, and
L. J.
Allamandola
, “
Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues
,”
Nature
416
,
401
403
(
2002
).
15.
K. I.
Öberg
,
R. T.
Garrod
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments
,”
Astron. Astrophys.
504
,
891
913
(
2009
).
16.
K.-J.
Chuang
,
G.
Fedoseev
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices—An extended view on complex organic molecule formation
,”
Mon. Not. R. Astron. Soc.
455
,
1702
1712
(
2016
).
17.
K.-J.
Chuang
,
G.
Fedoseev
,
D.
Qasim
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Production of complex organic molecules: H-atom addition versus UV irradiation
,”
Mon. Not. R. Astron. Soc.
467
,
2552
2565
(
2017
).
18.
G. M.
Muñoz-Caro
,
U. J.
Meierhenrich
,
W. A.
Schutte
,
B.
Barbier
,
A.
Arcones Segovia
,
H.
Rosenbauer
,
W. H.-P.
Thiemann
,
A.
Brack
, and
J. M.
Greenberg
, “
Amino acids from ultraviolet irradiation of interstellar ice analogues
,”
Nature
416
,
403
406
(
2002
).
19.
T.
Butscher
,
F.
Duvernay
,
A.
Rimola
,
M.
Segado-Centellas
, and
T.
Chiavassa
, “
Radical recombination in interstellar ices, a not so simple mechanism
,”
Phys. Chem. Chem. Phys.
19
,
2857
2866
(
2017
).
20.
M.
Nuevo
,
J. H.
Bredehöft
,
U. J.
Meierhenrich
,
L. L. S.
d’Hendecourt
, and
W. H.-P.
Thiemann
, “
Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs
,”
Astrobiology
10
,
245
256
(
2010
).
21.
P.
de Marcellus
,
C.
Meinert
,
I.
Myrgorodska
,
L.
Nahon
,
T.
Buhse
,
L. L. S.
d’Hendecourt
, and
U. J.
Meierhenrich
, “
Aldehydes and sugars from evolved precometary ice analogs: Importance of ices in astrochemical and prebiotic evolution
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
965
970
(
2015
).
22.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
, “
Interstellar polycyclic aromatic hydrocarbons—The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications
,”
Astrophys. J., Suppl. Ser.
71
,
733
775
(
1989
).
23.
A. G. G. M.
Tielens
, “
The molecular universe
,”
Rev. Mod. Phys.
85
,
1021
1081
(
2013
).
24.
W.
Hagen
,
L. J.
Allamandola
, and
J. M.
Greenberg
, “
Interstellar molecule formation in grain mantles—The laboratory analog experiments, results and implications
,”
Astrophys. Space Sci.
65
,
215
240
(
1979
).
25.
C.
Meinert
,
I.
Myrgorodska
,
P.
de Marcellus
,
T.
Buhse
,
L.
Nahon
,
S. V.
Hoffmann
,
L. L. S.
d’Hendecourt
, and
U. J.
Meierhenrich
, “
Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs
,”
Science
352
,
208
212
(
2016
).
26.
M. S.
Gudipati
and
L. J.
Allamandola
, “
Facile generation and storage of polycyclic aromatic hydrocarbon ions in astrophysical ices
,”
Astrophys. J.
596
,
L195
L198
(
2003
).
27.
M. S.
Gudipati
and
L. J.
Allamandola
, “
Polycyclic aromatic hydrocarbon ionization energy lowering in water ices
,”
Astrophys. J.
615
,
L177
L180
(
2004
).
28.
M. S.
Gudipati
and
L. J.
Allamandola
, “
Unusual stability of polycyclic aromatic hydrocarbon radical cations in amorphous water ices up to 120 K: Astronomical implications
,”
Astrophys. J.
638
,
286
292
(
2006
).
29.
J.
Bouwman
,
H. M.
Cuppen
,
A.
Bakker
,
L. J.
Allamandola
, and
H.
Linnartz
, “
Photochemistry of the PAH pyrene in water ice: The case for ion-mediated solid-state astrochemistry
,”
Astron. Astrophys.
511
,
A33
(
2010
).
30.
Z.
Guennoun
,
C.
Aupetit
, and
J.
Mascetti
, “
Photochemistry of coronene with water at 10 K: First tentative identification by infrared spectroscopy of oxygen containing coronene products
,”
Phys. Chem. Chem. Phys.
13
(
16
),
7340
7347
(
2011
).
31.
A.
Lignell
and
M. S.
Gudipati
, “
Mixing of the immiscible: Hydrocarbons in water-ice near the ice crystallization temperature
,”
J. Phys. Chem. A
119
,
2607
2613
(
2015
).
32.
S. H.
Cuylle
,
E. D.
Tenenbaum
,
J.
Bouwman
,
H.
Linnartz
, and
L. J.
Allamandola
, “
Lyα-induced charge effects of polycyclic aromatic hydrocarbons embedded in ammonia and ammonia:water ice
,”
Mon. Not. R. Astron. Soc.
423
,
1825
1830
(
2012
).
33.
A. M.
Cook
,
A.
Ricca
,
A. L.
Mattioda
,
J.
Bouwman
,
J.
Roser
,
H.
Linnartz
,
J.
Bregman
, and
L. J.
Allamandola
, “
Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice: The role of PAH ionization and concentration
,”
Astrophys. J.
799
,
14
(
2015
).
34.
S. H.
Cuylle
,
L. J.
Allamandola
, and
H.
Linnartz
, “
Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency
,”
Astron. Astrophys.
562
,
A22
(
2014
).
35.
P.
Warneck
, “
A microwave-powered hydrogen lamp for vacuum ultraviolet photochemical research
,”
Appl. Opt.
1
,
721
726
(
1962
).
36.
G. M.
Muñoz-Caro
and
W. A.
Schutte
, “
UV-photoprocessing of interstellar ice analogs: New infrared spectroscopic results
,”
Astron. Astrophys.
412
,
121
132
(
2003
).
37.
Y.-J.
Chen
,
K.-J.
Chuang
,
G. M.
Muñoz-Caro
,
M.
Nuevo
,
C.-C.
Chu
,
T.-S.
Yih
,
W.-H.
Ip
, and
C.-Y. R.
Wu
, “
Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice
,”
Astrophys. J.
781
,
15
(
2014
).
38.
N. F. W.
Ligterink
,
D. M.
Paardekooper
,
K.-J.
Chuang
,
M. L.
Both
,
G. A.
Cruz-Diaz
,
J. H.
van Helden
, and
H.
Linnartz
, “
Controlling the emission profile of an H2 discharge lamp to simulate interstellar radiation fields
,”
Astron. Astrophys.
584
,
A56
(
2015
).
39.
E. T.
Es-sebbar
,
Y.
Bénilan
,
N.
Fray
,
H.
Cottin
,
A.
Jolly
, and
M.-C.
Gazeau
, “
Optimization of a solar simulator for planetary-photochemical studies
,”
Astrophys. J., Suppl. Ser.
218
,
19
(
2015
).
40.
H.
Cottin
,
M. H.
Moore
, and
Y.
Bénilan
, “
Photodestruction of relevant interstellar molecules in ice mixtures
,”
Astrophys. J.
590
,
874
881
(
2003
).
41.
D.
Fulvio
,
A. C.
Brieva
,
S. H.
Cuylle
,
H.
Linnartz
,
C.
Jäger
, and
T.
Henning
, “
A straightforward method for vacuum-ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry
,”
Appl. Phys. Lett.
105
(
1
),
014105
(
2014
).
42.
S. E.
Stein
, “
Mass spectra
,” in
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
, edited by
P. J.
Lindstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
2018
).
43.
G. A.
Baratta
and
M. E.
Palumbo
, “
Infrared optical constants of CO and CO2 thin icy films
,”
J. Opt. Soc. Am. A
15
,
3076
3085
(
1998
).
44.
Z.
Dohnálek
,
G. A.
Kimmel
,
P.
Ayotte
,
R. S.
Smith
, and
B. D.
Kay
, “
The deposition angle-dependent density of amorphous solid water films
,”
J. Chem. Phys.
118
,
364
372
(
2003
).
45.
J.-B.
Bossa
,
K.
Isokoski
,
D. M.
Paardekooper
,
M.
Bonnin
,
E. P.
van der Linden
,
T.
Triemstra
,
S.
Cazaux
,
A. G. G. M.
Tielens
, and
H.
Linnartz
, “
Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations
,”
Astron. Astrophys.
561
,
A136
(
2014
).
46.
S. G.
Warren
and
R. E.
Brandt
, “
Optical constants of ice from the ultraviolet to the microwave: A revised compilation
,”
J. Geophys. Res.
113
(
D14
),
D14220
, https://doi.org/10.1029/2007JD009744 (
2008
).
47.
M.
Bouilloud
,
N.
Fray
,
Y.
Bénilan
,
H.
Cottin
,
M.-C.
Gazeau
, and
A.
Jolly
, “
Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO
,”
Mon. Not. R. Astron. Soc.
451
,
2145
2160
(
2015
).
48.
H. G.
Kjaergaard
,
T. W.
Robinson
, and
K. A.
Brooking
, “
Calculated CH-stretching overtone spectra of naphthalene, anthracene and their cations
,”
J. Phys. Chem. A
104
,
11297
11303
(
2000
).
49.
J.
Malkin
,
Photophysical and Photochemical Properties of Aromatic Compounds
(
CRC Press
,
1992
).
50.
D. L.
Kokkin
,
N. J.
Reilly
,
T. P.
Troy
,
K.
Nauta
, and
T. W.
Schmidt
, “
Gas phase spectra of all-benzenoid polycyclic aromatic hydrocarbons: Triphenylene
,”
J. Chem. Phys.
126
(
8
),
084304
(
2007
).
51.
V.
Kofman
,
P. J.
Sarre
,
R. E.
Hibbins
,
I. L.
ten Kate
, and
H.
Linnartz
, “
Laboratory spectroscopy and astronomical significance of the fully-benzenoid PAH triphenylene and its cation
,”
Mol. Astrophys.
7
,
19
26
(
2017
).
52.
T.
Keszthelyi
,
G.
Balakrishnan
,
R.
Wilbrandt
,
W. A.
Yee
, and
F.
Negri
, “
Evidence of dynamical Jahn-Teller effect on triphenylene radical cation: Resonance Raman spectrum and ab initio quantum-chemical calculations
,”
J. Phys. Chem. A
104
,
9121
9129
(
2000
).
53.
S. R.
Langhoff
, “
Theoretical infrared spectra for polycyclic aromatic hydrocarbon neutrals, cations, and anions
,”
J. Chem. Phys.
100
(
8
),
2819
2841
(
1996
).
54.
C.
Boersma
,
C. W.
Bauschlicher
, Jr.
,
A.
Ricca
,
A. L.
Mattioda
,
J.
Cami
,
E.
Peeters
,
F.
Sánchez de Armas
,
G.
Puerta Saborido
,
D. M.
Hudgins
, and
L. J.
Allamandola
, “
The NASA Ames PAH IR spectroscopic database version 2.00: Updated content, web site, and on(off)line tools
,”
Astrophys. J., Suppl. Ser.
211
,
8
(
2014
).
55.
C. W.
Bauschlicher
, Jr.
,
A.
Ricca
,
C.
Boersma
, and
L. J.
Allamandola
, “
The NASA Ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factors
,”
Astrophys. J., Suppl. Ser.
234
,
32
(
2018
).
56.
E. E.
Hardegree-Ullman
,
M. S.
Gudipati
,
A. C. A.
Boogert
,
H.
Lignell
,
L. J.
Allamandola
,
K. R.
Stapelfeldt
, and
M.
Werner
, “
Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices
,”
Astrophys. J.
784
,
172
(
2014
).
57.
J.
Bouwman
,
A. L.
Mattioda
,
H.
Linnartz
, and
L. J.
Allamandola
, “
Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. I. Mid-IR spectroscopy and photoproducts
,”
Astron. Astrophys.
525
,
A93
(
2011
).
58.
M. P.
Bernstein
,
S. A.
Sandford
, and
L. J.
Allamandola
, “
The infrared spectra of nitriles and related compounds frozen in Ar and H2O
,”
Astrophys. J.
476
,
932
942
(
1997
).
59.
K.
Altwegg
,
H.
Balsiger
,
A.
Bar-Nun
,
J.-J.
Berthelier
,
A.
Bieler
,
P.
Bochsler
,
C.
Briois
,
U.
Calmonte
,
M. R.
Combi
,
H.
Cottin
,
J.
De Keyser
,
F.
Dhooghe
,
B.
Fiethe
,
S. A.
Fuselier
,
S.
Gasc
,
T. I.
Gombosi
,
K. C.
Hansen
,
M.
Haessig
,
A.
Ja ckel
,
E.
Kopp
,
A.
Korth
,
L.
Le Roy
,
U.
Mall
,
B.
Marty
,
O.
Mousis
,
T.
Owen
,
H.
Reme
,
M.
Rubin
,
T.
Semon
,
C.-Y.
Tzou
,
J. H.
Waite
, and
P.
Wurz
, “
Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko
,”
Sci. Adv.
2
,
e1600285
(
2016
).
60.
P.
Ehrenfreund
,
M. P.
Bernstein
,
J. P.
Dworkin
,
S. A.
Sandford
, and
L. J.
Allamandola
, “
The photostability of amino acids in space
,”
Astrophys. J.
550
,
L95
L99
(
2001
).
61.
L. L.
Danylewych
and
R.
W Nicholls
, “
Intensity measurements and transition probabilities for bands of the CN violet (B2Σ—X2Σ) band system
,”
Proc. R. Soc. A
360
,
557
573
(
1978
).
You do not currently have access to this content.