The conceptual design of a fourth generation hybrid electron cyclotron resonance (ECR) ion source operated at 60 GHz is proposed. The axial magnetic mirror is generated with a set of three Nb3Sn coils, while the hexapole is made with room temperature (RT) copper coils. The motivations for such a hybrid development are to study further the ECR plasma physics and the intense multicharged ion beams’ production and transport at a time when a superconducting (SC) hexapole appears unrealistic at 60 GHz. The RT hexapole coil designed is an evolution of the polyhelix technology developed at the French High Magnetic Field Facility. The axial magnetic field is generated by means of 3 Nb3Sn SC coils operated with a maximum current density of 350 A/mm2 and a maximum coil load line factor of 81%. The ECR plasma chamber resulting from the design features an inner radius of 94 mm and a length of 500 mm. The radial magnetic intensity is 4.1 T at the wall. Characteristic axial mirror peaks are 8 and 4.5 T, with 1.45 T minimum in between.

1.
R.
Geller
 et al., in
Proceedings of the 8th International Workshop on ECR Ion Sources, East Lansing
, NSCL Report MSUCP-47 (
1987
), edited by J. Parker, p.
1
.
2.
D. Z.
Xie
,
W.
Lu
,
J. Y.
Benitez
,
C. M.
Lyneis
, and
D. S.
Todd
, “
Recent production of intense high charge ion beams with VENUS
,” in
22nd International Workshop on ECR Ion Sources (ECRIS2016)
,
Busan, Korea
,
2016
, http://www.jacow.org, p.
THAO01
.
3.
L.
Sun
 et al., “
SECRAL II ion source development and the first commissioning at 28 GHz
,” in
22nd International Workshop on ECR Ion Sources (ECRIS2016)
,
Busan, Korea
,
2016
, http://www.jacow.org, p.
TUAO04
.
4.
C. M.
Lyneis
, “
Scaling laws in electron cyclotron resonance ion sources
,” in
22nd International Workshop on ECR Ion Sources (ECRIS2016)
,
Busan, Korea
,
2016
, http://www.jacow.org, p.
MOAO01
.
5.
D.
Hitz
,
A.
Girard
,
G.
Melin
,
S.
Gammino
,
G.
Ciavola
, and
L.
Celona
,
Rev. Sci. Instrum.
73
,
509
(
2002
).
6.
C.
Lyneis
,
P.
Ferracin
,
S.
Caspi
,
A.
Hodgkinson
, and
G. L.
Sabbi
,
Rev. Sci. Instrum.
83
,
02A301
(
2012
).
7.
M.
Juchno
 et al., “
Mechanical design of a Nb3Sn superconducting magnet system for a 45 GHz ECR ion source
,”
IEEE Trans. Appl. Supercond.
(to be published).
8.
H.
Zhao
,
L.
Sun
,
J.
Guo
,
W.
Zhang
, and
W.
Wu
, “
Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz FECR
,”
Rev. Sci. Instrum.
(to be published).
9.
D. Z.
Xie
,
J. Y.
Benitez
,
A.
Hodgkinson
,
T.
Loew
,
C. M.
Lyneis
,
L.
Phair
,
P.
Pipersky
,
B.
Reynolds
, and
D. S.
Todd
,
Rev. Sci. Instrum.
87
,
02A702
(
2016
).
10.
T.
Lamy
,
J.-C.
Curdy
,
P.
Sole
,
P.
Sortais
,
T.
Thuillier
,
J.-L.
Vieux-Rochaz
, and
D.
Voulot
,
Rev. Sci. Instrum.
75
,
1485
(
2004
).
11.
P.
Pugnat
 et al.,
IEEE Trans. Appl. Supercond.
28
(
3
),
4300907
(
2018
).
12.
R.
Geller
,
Electron Cyclotron Resonance Ion Sources and ECR Plasmas
(
Institute of Physics, CRC Press
,
Bristol
,
1996
).
13.
L.
Latrasse
 et al.,
Rev. Sci. Instrum.
81
,
02A324
(
2010
).
14.
E.
Wildner
 et al.,
Phys. Rev. Spec. Top.–Accel. Beams
17
,
071002
(
2014
).
15.
C.
Trophime
,
K.
Egorov
,
F.
Debray
,
W.
Joss
, and
G.
Aubert
,
IEEE Trans. Appl. Supercond.
12
(
1
),
1483
1487
(
2002
).
16.
T.
Lamy
 et al., “
60-GHz ECR ion sources
,” in
13th International Conference on Heavy Ion Accelerator Technology (HIAT 2015)
,
Yokohama, Japan
,
2015
, http://www.jacow.org, pp.
277
281
.
17.
P.
Elleaume
,
O.
Chubar
, and
J.
Chavanne
, “
Computing 3D magnetic fields from insertion devices
,” in
Particle Accelerator Conference (PAC97)
,
Vancouver, B.C., Canada
,
1997
, http://www.jacow.org, pp.
3509
3511
.
18.
D. B.
Montgomery
,
Solenoid Magnet Design
(
Wiley-Interscience
,
New York
,
1969
), p.
38
.
You do not currently have access to this content.