The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world’s first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

1.
O.
Kester
, “
Status of the FAIR facility
,” in
Proceedings of the 4th International Particle Accelerator Conference, Shanghai, China, 12–17, May 2013
(
JACoW
,
2013
), p.
1085
, TUXBI01.
2.
J.
Wei
, “
The very high intensity future
,” in
Proceedings of the 5th International Particle Accelerator Conference, Dresden, Germany, 15–20, June 2014
(
JACoW
,
2014
), p.
17
, MOYBA01.
3.
T.
Thuillier
,
J.
Angot
,
C.
Barué
,
C.
Canet
,
T.
Lamy
,
P.
Lehérissier
,
F.
Lemagnen
,
L.
Maunoury
, and
C.
Peaucelle
, “
Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2
,”
Rev. Sci. Instrum.
83
,
02A339
(
2012
).
4.
J. C.
Yang
,
J. W.
Xia
,
G. Q.
Xiao
,
H. S.
Xu
,
H. W.
Zhao
,
X. H.
Zhou
 et al., “
High intensity heavy ion accelerator facility (HIAF) in China
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
317
,
263
(
2013
).
5.
R.
Geller
,
Electron Cyclotron Resonance Ion Sources and ECR Plasma
(
Institute of Physics
,
Bristol
,
1996
).
6.
S.
Gammino
,
G.
Ciavola
,
L.
Celona
,
D.
Hitz
,
A.
Girard
, and
G.
Melin
, “
Operation of the SERSE superconducting electron cyclotron resonance ion source at 28 GHz
,”
Rev. Sci. Instrum.
72
,
4090
(
2001
).
7.
D.
Leitner
,
M. L.
Galloway
,
T. J.
Loew
,
C. M.
Lyneis
,
I.
Castro Rodriguez
, and
D. S.
Todd
, “
High intensity production of high and medium charge state uranium and other heavy ion beams with VENUS
,”
Rev. Sci. Instrum.
79
,
02C710
(
2008
).
8.
C.
Lyneis
,
D.
Leitner
,
M.
Leitner
,
C.
Taylor
, and
S.
Abbottet
, “
The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS
,”
Rev. Sci. Instrum.
81
,
02A201
(
2010
).
9.
H. W.
Zhao
,
L. T.
Sun
,
W.
Lu
,
X. Z.
Zhang
,
X. H.
Guo
,
Y.
Cao
,
H. Y.
Zhao
,
Y. C.
Feng
,
J. Y.
Li
,
H. Y.
Ma
,
Y.
Shang
,
B. H.
Ma
,
H.
Wang
,
X. X.
Li
, and
D. Z.
Xie
, “
New development of advanced superconducting electron cyclotron resonance ion source SECRAL
,”
Rev. Sci. Instrum.
81
,
02A202
(
2010
).
10.
L. T.
Sun
,
J. W.
Guo
,
W.
Lu
,
W. H.
Zhang
,
Y. C.
Feng
,
Y.
Yang
,
C.
Qian
,
X.
Fang
,
H. Y.
Ma
,
X. Z.
Zhang
, and
H. W.
Zhao
, “
Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL
,”
Rev. Sci. Instrum.
87
,
02A707
(
2016
).
11.
H. W.
Zhao
,
L. T.
Sun
,
J. W.
Guo
,
W.
Lu
,
D. Z.
Xie
,
D.
Hitz
,
X. Z.
Zhang
, and
Y.
Yang
, “
Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source
,”
Phys. Rev. Accel. Beams
20
,
094801
(
2017
).
12.
T.
Nakagawa
,
Y.
Higurashi
,
J.
Ohnishi
,
T.
Aihara
,
M.
Tamura
,
A.
Uchiyama
,
H.
Okuno
,
K.
Kusaka
,
M.
Kidera
,
E.
Ikezawa
,
M.
Fujimaki
,
Y.
Sato
,
Y.
Watanabe
,
M.
Komiyama
,
M.
Kase
,
A.
Goto
,
O.
Kamigaito
, and
Y.
Yano
, “
First results from the new RIKEN superconducting electron cyclotron resonance ion source
,”
Rev. Sci. Instrum.
81
,
02A320
(
2010
).
13.
G.
Machicoane
,
D.
Cole
,
K.
Holland
,
D.
Leitner
,
D.
Morris
,
D.
Neben
, and
L.
Toboset
, “
First results at 24 GHz with the superconducting source for ions (SuSI)
,” in
Proceedings of the 21st International Workshop on ECR Ion Sources, Nizhny Novgorod, 2014
(
JACoW
,
2014
), p.
1
.
14.
H. W.
Zhao
,
L. T.
Sun
,
Y.
Cao
,
H. Y.
Zhao
,
X. Z.
Zhang
,
X. H.
Guo
,
W.
Lu
,
Z. M.
Zhang
,
P.
Yuan
,
M. T.
Song
,
J. Q.
Zhang
,
B.
Wang
,
W. L.
Zhan
, and
B. W.
Wei
, “
An advanced superconducting ECR ion source SECRAL at IMP: First results and operation at 18 GHz
,” in
Proceedings of the 18th International Conference on Cyclotrons and Their Applications, Giardini Naxos, 2007
(
JACoW
,
2007
), p.
271
.
15.
L. T.
Sun
,
W.
Lu
,
W.
Wu
,
T. J.
Yang
,
Y.
Yang
,
B. M.
Wu
,
E. M.
Mei
,
S. J.
Zheng
,
D. S.
Ni
,
B.
Zhao
,
L.
Zhu
,
Q.
Hu
,
M. Z.
Guan
,
W. H.
Zhang
,
J. W.
Guo
,
X.
Fang
,
X. Z.
Zhang
,
H. W.
Zhao
, and
L. Z.
Ma
, “
Status report of SECRAL II ion source development
,” in
Proceedings of the 21st International Workshop on ECR Ion Sources, Nizhny Novgord, 2014
(
JACoW
,
2014
), p.
94
.
16.
H. W.
Zhao
,
L. T.
Sun
,
X. Z.
Zhang
,
Z. M.
Zhang
,
X. H.
Guo
,
W.
He
,
P.
Yuan
,
M. T.
Song
,
J. Y.
Li
,
Y. C.
Feng
,
Y.
Cao
,
X. X.
Li
,
W. L.
Zhan
,
B. W.
Wei
, and
D. Z.
Xie
, “
Advanced superconducting electron cyclotron resonance ion source SECRAL: Design, construction and the first test result
,”
Rev. Sci. Instrum.
77
,
03A333
(
2006
).
17.
L. T.
Sun
,
X.
Fang
,
Y. C.
Feng
,
J. W.
Guo
,
H. Y.
Ma
,
L. Z.
Ma
,
Y. M.
Ma
,
Z.
Shen
,
W.
Wu
,
T.
Yang
,
Y.
Yang
,
W. H.
Zhang
,
X. Z.
Zhang
,
B.
Zhao
, and
H. W.
Zhao
, “
SECRAL II ion source development and the first commissioning at 28 GHz
,” in
Proceedings of ECRIS 2016
,
Busan, Korea
,
August 28-September 1, 2016
, http://www.jacow.org, p.
43
.
18.
J. W.
Guo
,
L.
Sun
,
X. J.
Niu
,
X. Z.
Zhang
,
W.
Lu
,
W. H.
Zhang
,
Y. C.
Feng
, and
H. W.
Zhao
, “
24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL
,”
Rev. Sci. Instrum.
87
,
02A708
(
2016
).
19.
R.
Geller
, “
ECRIS: The electron cyclotron resonance ion sources
,”
Annu. Rev. Nucl. Part. Sci.
40
,
15
(
1990
).
20.
D.
Hitz
,
G.
Melin
, and
A.
Girard
, “
Fundamental aspects of electron cyclotron resonance ion sources: From classical to large superconducting devices
,”
Rev. Sci. Instrum.
71
,
839
(
2000
).
21.
C. M.
Lyneis
,
S.
Caspi
,
P.
Ferracin
,
D.
Leitner
,
S.
Prestemon
,
G. L.
Sabbi
,
D. S.
Todd
, and
F.
Trillaud
, “
Conceptual design of a 56 GHz ECR ion source magnet structure
,” in
Proceedings of ECRIS 2008
,
Chicago, USA
,
2008
, TUCO-A01.
22.
C.
Lyneis
,
P.
Ferracin
,
S.
Caspi
,
A.
Hodgkinson
, and
G. L.
Sabbi
, “
Concept for a fourth generation electron cyclotron resonance ion source
,”
Rev. Sci. Instrum.
83
,
02A301
(
2012
).
23.
P.
Ferracin
,
S.
Caspi
,
H.
Felice
,
D.
Leitner
,
C. M.
Lyneis
,
S.
Prestemon
,
G. L.
Sabbi
, and
D. S.
Todd
, “
Nb3Sn superconducting magnets for electron cyclotron resonance
,”
Rev. Sci. Instrum.
81
,
02A309
(
2010
).
24.
J. W.
Guo
,
L.
Sun
,
X. J.
Niu
,
J. W.
Liu
,
X. Z.
Zhang
,
W. H.
Zhang
,
W.
Lu
,
Z.
Shen
,
L. X.
Li
,
L. B.
Li
,
Y. C.
Feng
,
X.
Fang
, and
H. W.
Zhao
, “
45 GHz microwave power transmission and coupling scheme study with superconducting ECR ion source at IMP
,” in
Proceedings of the 17th International Conference on Ion Source
,
Geneva, Switzerland
,
October, 2017
.
25.
D. Z.
Xie
, “
A new structure of superconducting magnet system for 50 GHz operations (invited)
,”
Rev. Sci. Instrum.
83
,
02A302
(
2012
).
26.
D. Z.
Xie
,
J. Y.
Benitez
,
A.
Hodgkinson
,
T.
Loew
,
C. M.
Lyneis
,
L.
Phair
,
P.
Pipersky
,
B.
Reynolds
, and
D. S.
Todd
, “
Development status of a next generation ECRIS: MARS-D at LBNL
,”
Rev. Sci. Instrum.
87
,
02A702
(
2016
).
27.
L. T.
Sun
,
W.
Lu
,
E. M.
Mei
,
G. L.
Sabbi
,
D.
Xie
,
W.
Wu
, and
H. W.
Zhao
, “
Superconducting magnets for high performance ECR ion sources
,”
IEEE Trans. Appl. Supercond.
28
(
3
),
4101606
(
2018
).
28.
P.
Ferracin
,
G.
Ambrosio
,
M.
Anerella
,
F.
Borgnolutti
,
R.
Bossert
 et al., “
Magnet design of the 150 mm aperture low-β quadrupoles for the high luminosity LHC
,”
IEEE Trans. Appl. Supercond.
24
(
3
),
4002306
(
2014
).
29.
M.
Juchno
,
A.
Hafalia
,
W.
Lu
,
E.
Ravaioli
,
G. L.
Sabbi
,
L.
Sun
,
W.
Wu
,
D.
Xie
,
H. W.
Zhao
, and
L.
Zhu
, “
Mechanical design of a Nb3Sn superconducting magnet system for a 45 GHz ECR ion source
,”
IEEE Trans. Appl. Supercond.
28
(
3
),
4602806
(
2018
).
30.
G.
Sabbi
,
R.
Hafalia
,
M.
Juchno
,
W.
Lu
,
I.
Pong
,
E.
Ravaioli
,
D.
Xie
,
X.
Wang
,
L.
Sun
,
W.
Wu
,
H. W.
Zhao
, and
L.
Zhu
, “
Design of the superconducting magnet system for a 45 GHz ECR ion source
,” LBNL Report 2001036,
10 August 2017
.
31.
E.
Ravaioli
,
A.
Hafalia
,
M.
Juchno
,
W.
Lu
,
G. L.
Sabbi
,
L.
Sun
,
W.
Wu
,
D.
Xie
,
H. W.
Zhao
, and
S. J.
Zheng
, “
Quench protection of a Nb3Sn superconducting magnet system for a 45 GHz ECR ion source
,”
IEEE Trans. Appl. Supercond.
28
(
3
),
4700906
(
2018
).
32.
A. I.
Tsvetkov
, in
Proceeding of the 28th Joint Russian-German Meeting on ECRH and Gyrotrons
,
Nizhny Novgorod
,
2016
.
You do not currently have access to this content.