The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

1.
R.
Hemsworth
 et al.,
Nucl. Fusion
49
,
045006
(
2009
).
2.
V.
Toigo
 et al.,
Nucl. Fusion
57
,
086027
(
2017
).
3.
P.
Franzen
 et al.,
Fusion Eng. Des.
88
,
3132
(
2013
).
4.
D.
Wünderlich
,
W.
Kraus
,
M.
Fröschle
,
R.
Riedl
,
U.
Fantz
, and
B.
Heinemann
,
AIP Conf. Proc.
1869
,
030003
(
2017
).
5.
U.
Fantz
,
C.
Hopf
,
D.
Wünderlich
,
R.
Friedl
,
M.
Fröschle
,
B.
Heinemann
,
W.
Kraus
,
U.
Kurutz
,
R.
Riedl
,
R.
Nocentini
, and
L.
Schiesko
, “
Towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI systems
,”
Nucl. Fusion
(submitted).
6.
B.
Heinemann
,
U.
Fantz
,
W.
Kraus
,
L.
Schiesko
,
C.
Wimmer
,
D.
Wünderlich
,
F.
Bonomo
,
M.
Fröschle
,
R.
Nocentini
, and
R.
Riedl
,
New J. Phys.
19
,
015001
(
2017
).
7.
W.
Kraus
,
U.
Fantz
,
P.
Franzen
,
M.
Fröschle
,
B.
Heinemann
,
C.
Martens
,
R.
Riedl
, and
D.
Wünderlich
,
AIP Conf. Proc.
1515
(
1
),
129
138
(
2013
).
8.
B.
Heinemann
,
U.
Fantz
,
W.
Kraus
,
D.
Wünderlich
,
F.
Bonomo
,
M.
Fröschle
,
I.
Mario
,
R.
Nocentini
,
R.
Riedl
,
C.
Wimmer
, “
Latest achievements of the negative ion beam test facility ELISE
,”
Fusion Eng. Des.
(submitted).
9.
W.
Kraus
,
U.
Fantz
,
B.
Heinemann
, and
P.
Franzen
,
Fusion Eng. Des.
91
,
16
20
(
2015
).
10.
D.
Wünderlich
,
W.
Kraus
,
M.
Fröschle
,
R.
Riedl
,
U.
Fantz
, and
B.
Heinemann
,
Plasma Phys. Controlled Fusion
58
,
125005
(
2016
).
11.
U.
Fantz
,
P.
Franzen
, and
D.
Wünderlich
,
Chem. Phys.
398
,
7
16
(
2012
).
12.
U.
Fantz
,
L.
Schiesko
,
D.
Wünderlich
, and
NNBI Team
,
AIP Conf. Proc.
1515
,
187
196
(
2013
).
13.
C.
Wimmer
and
U.
Fantz
,
J. Appl. Phys.
120
,
073301
(
2016
).
14.
D.
Wünderlich
,
U.
Fantz
,
B.
Heinemann
,
W.
Kraus
,
R.
Riedl
, and
C.
Wimmer
,
Nucl. Fusion
56
,
106004
(
2016
).
15.
C.
Wimmer
,
U.
Fantz
,
M.
Lindauer
, and
A.
Mimo
, “
Improved understanding of the caesium dynamics in large H sources by combining TDLAS measurements and modelling
,”
AIP Conf. Proc.
(submitted).
16.
F.
Bonomo
,
M.
Barbisan
,
U.
Fantz
,
A.
Hurlbatt
,
I.
Mario
, and
D.
Wünderlich
, “
Overview of the beam physics investigation at the ELISE test facility
,”
AIP Conf. Proc.
(submitted).
17.
S.
Lishev
 et al.,
AIP Conf. Proc.
1869
,
030042
(
2017
).
You do not currently have access to this content.