We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

1.
D.
Cahen
and
A.
Kahn
,
Adv. Mater.
15
,
271
(
2003
).
3.
R.
Schlaf
,
H.
Murata
, and
Z. H.
Kafafi
,
J. Electron Spectrosc. Relat. Phenom.
120
,
149
(
2001
).
4.
A.
Mohamed
and
L.
André
,
J. Phys. D: Appl. Phys.
31
,
1301
(
1998
).
5.
L.
Kelvin
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
46
,
258
(
1898
).
6.
K.
Siegbahn
,
C.
Nordling
,
A.
Fahlman
,
R.
Nordberg
,
K.
Hamrin
,
J.
Hedman
,
G.
Johansson
,
T.
Bergmark
,
S.-E.
Karlsson
,
I.
Lindgren
, and
B.
Lindberg
, “
ESCA: Atomic, molecular and solid state structure studied by means of electron spectroscopy
,” in Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV, Volume 20 (North-Holland,
1967
).
7.
J.
Rabalais
,
Principles of Ultraviolet Photoelectron Spectroscopy
(
John Wiley and Sons
,
New York
,
1977
).
8.
M.
Nonnenmacher
,
M. P.
O’Boyle
, and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
58
,
2921
(
1991
).
9.
M.
Bohmisch
,
F.
Burmeister
,
A.
Rettenberger
,
J.
Zimmermann
,
J.
Boneberg
, and
P.
Leiderer
,
J. Phys. Chem. B
101
,
10162
(
1997
).
10.
T.
Glatzel
,
M.
Rusu
,
S.
Sadewasser
, and
M. C.
Lux-Steiner
,
Nanotechnology
19
,
145705
(
2008
).
11.
W. N.
Hansen
and
G. J.
Hansen
,
Surf. Sci.
481
,
172
(
2001
).
12.
A.
Liscio
,
V.
Palermo
,
K.
Müllen
, and
P.
Samorì
,
J. Phys. Chem. C
112
,
17368
(
2008
).
13.
C.
Sommerhalter
,
T. W.
Matthes
,
T.
Glatzel
,
A.
Jäger-Waldau
, and
M. C.
Lux-Steiner
,
Appl. Phys. Lett.
75
,
286
(
1999
).
14.
C. H.
Kim
,
C. D.
Bae
,
K. H.
Ryu
,
B. K.
Lee
, and
H. J.
Shin
,
Solid State Phenom.
124-126
,
607
(
2007
).
15.
C.
Kim
,
B.
Lee
,
H. J.
Yang
,
H. M.
Lee
,
J. G.
Lee
, and
H.
Shin
,
J. Korean Phys. Soc.
47
,
243
(
2005
).
16.
V.
Palermo
,
M.
Palma
,
Ž.
Tomović
,
M. D.
Watson
,
R.
Friedlein
,
K.
Müllen
, and
P.
Samorì
,
ChemPhysChem
6
,
2371
(
2005
).
17.
18.
P. G.
Schroeder
,
M. W.
Nelson
,
B. A.
Parkinson
, and
R.
Schlaf
,
Surf. Sci.
459
,
349
(
2000
).
19.
B.
Reihl
,
J. K.
Gimzewski
,
J. M.
Nicholls
, and
E.
Tosatti
,
Phys. Rev. B
33
,
5770
(
1986
).
20.
S. J.
Sque
,
R.
Jones
, and
P. R.
Briddon
,
Phys. Status Solidi A
204
,
3078
(
2007
).
21.
D.
Martinez-Martin
,
R.
Longuinhos
,
J. G.
Izquierdo
,
A.
Marele
,
S. S.
Alexandre
,
M.
Jaafar
,
J. M.
Gómez-Rodríguez
,
L.
Bañares
,
J. M.
Soler
, and
J.
Gomez-Herrero
,
Carbon
61
,
33
(
2013
).
22.
O.
Ochedowski
,
B. K.
Bussmann
,
B. B.
d’Etat
,
H.
Lebius
, and
M.
Schleberger
,
Appl. Phys. Lett.
102
,
153103
(
2013
).
23.
Y.
Lu
,
M.
Muñoz
,
C. S.
Steplecaru
,
C.
Hao
,
M.
Bai
,
N.
Garcia
,
K.
Schindler
, and
P.
Esquinazi
,
Phys. Rev. Lett.
97
,
076805
(
2006
).
24.
S.
Sadewasser
and
T.
Glatzel
,
Phys. Rev. Lett.
98
,
269701
(
2007
).
25.
W.
Melitz
,
J.
Shen
,
A. C.
Kummel
, and
S.
Lee
,
Surf. Sci. Rep.
66
,
1
(
2011
).
26.
P.
Bleuet
,
P.
Cloetens
,
P.
Gergaud
,
D.
Mariolle
,
N.
Chevalier
,
R.
Tucoulou
,
J.
Susini
, and
A.
Chabli
,
Rev. Sci. Instrum.
80
,
069902
(
2009
).
27.
S.
Pouch
,
M.
Amato
,
M.
Bertocchi
,
S.
Ossicini
,
N.
Chevalier
,
T.
Mélin
,
J.-M.
Hartmann
,
O.
Renault
,
V.
Delaye
,
D.
Mariolle
, and
Ł.
Borowik
,
J. Phys. Chem. C
119
,
26776
(
2015
).
28.
R.
García
and
A.
San Paulo
,
Phys. Rev. B
60
,
4961
(
1999
).
29.
G.
Li
,
B.
Mao
,
F.
Lan
, and
L.
Liu
,
Rev. Sci. Instrum.
83
,
037101
(
2012
).
30.
A. W.
Dweydari
and
C. H. B.
Mee
,
Phys. Status Solidi A
17
,
247
(
1973
).
31.
P. O.
Gartland
,
Phys. Norv.
6
(
3-4
),
201
(
1972
).
32.
R. M.
Eastment
and
C. H. B.
Mee
,
J. Phys. F: Met. Phys.
3
,
1738
(
1973
).
33.
H. E.
Farnsworth
and
R. P.
Winch
,
Phys. Rev.
58
,
812
(
1940
).
34.
K.
Giesen
,
F.
Hage
,
F. J.
Himpsel
,
H. J.
Riess
, and
W.
Steinmann
,
Phys. Rev. Lett.
55
,
300
(
1985
).
35.
S.
Ryu
,
J.
Chang
, and
S. K.
Kim
,
J. Chem. Phys.
123
,
114710
(
2005
).
36.
M.
Chelvayohan
and
C. H. B.
Mee
,
J. Phys. C: Solid State Phys.
15
,
2305
(
1982
).
37.
K.
Giesen
,
F.
Hage
,
F. J.
Himpsel
,
H. J.
Riess
,
W.
Steinmann
, and
N. V.
Smith
,
Phys. Rev. B
35
,
975
(
1987
).
38.
W. Y.
Li
,
K.
Goto
, and
R.
Shimizu
,
Surf. Interface Anal.
37
,
244
(
2005
).
39.
H.-N.
Li
,
X.-X.
Wang
,
S.-L.
He
,
K.
Ibrahim
,
H.-J.
Qian
,
R.
Su
,
J.
Zhong
,
M. I.
Abbas
, and
C.-H.
Hong
,
Surf. Sci.
586
,
65
(
2005
).
40.
D.
Straub
and
F. J.
Himpsel
,
Phys. Rev. B
33
,
2256
(
1986
).
41.
S. K.
Kim
,
J. S.
Kim
,
J. Y.
Han
,
J. M.
Seo
,
C. K.
Lee
, and
S. C.
Hong
,
Surf. Sci.
453
,
47
(
2000
).
42.
G. A.
Haas
and
R. E.
Thomas
,
J. Appl. Phys.
48
,
86
(
1977
).
43.
T.
Wegehaupt
,
D.
Rieger
, and
W.
Steinmann
,
Phys. Rev. B
37
,
10086
(
1988
).
44.
J. E.
Rowe
and
N. V.
Smith
,
Phys. Rev. B
10
,
3207
(
1974
).
45.
G. G.
Tibbetts
,
J. M.
Burkstrand
, and
J. C.
Tracy
,
Phys. Rev. B
15
,
3652
(
1977
).
47.
R. W.
Strayer
,
W.
Mackie
, and
L. W.
Swanson
,
Surf. Sci.
34
,
225
(
1973
).
48.
J. K.
Grepstad
,
P. O.
Gartland
, and
B. J.
Slagsvold
,
Surf. Sci.
57
,
348
(
1976
).
49.
A. J.
Maxwell
,
P. A.
Brühwiler
,
D.
Arvanitis
,
J.
Hasselström
,
M. K. J.
Johansson
, and
N.
Mårtensson
,
Phys. Rev. B
57
,
7312
(
1998
).
50.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
51.
G. N.
Derry
,
M. E.
Kern
, and
E. H.
Worth
,
J. Vac. Sci. Technol., A
33
,
060801
(
2015
).
52.
J. C.
Riviere
,
Work Function: Measurements and Results
(
Dekker
,
New York
,
1969
).
53.
J.
Hölzl
and
F. K.
Schulte
, “
Work function of metals
,” in
Solid Surface Physics
, Springer Tracts in Modern Physics Vol. 85, edited by J. Hölzl, F. K. Schulte, and H. Wagner (
Springer, Berlin, Heidelberg
,
1979
).
54.
H. C.
Potter
and
J. M.
Blakely
,
J. Vac. Sci. Technol.
12
,
727
(
1975
).
55.
C.
Barth
,
T.
Hynninen
,
M.
Bieletzki
,
C. R.
Henry
,
A. S.
Foster
,
F.
Esch
, and
U.
Heiz
,
New J. Phys.
12
,
093024
(
2010
).
56.
E.
Inami
and
Y.
Sugimoto
,
Phys. Rev. Lett.
114
,
246102
(
2015
).
57.
E.
Taglauer
,
Appl. Phys. A: Solids Surf.
51
,
238
(
1990
).
58.
Y.
Almadori
,
Ł.
Borowik
,
N.
Chevalier
, and
J. C.
Barbé
,
Nanotechnology
28
,
045306
(
2017
).
59.
B. V.
Andryushechkin
,
V. V.
Cherkez
,
E. V.
Gladchenko
,
G. M.
Zhidomirov
,
B.
Kierren
,
Y.
Fagot-Revurat
,
D.
Malterre
, and
K. N.
Eltsov
,
Phys. Rev. B
84
,
075452
(
2011
).
60.
C. P. A.
Czanderna
and
T.
Madey
,
Specimen Handling, Preparation, and Treatments in Surface Characterization
(
Kluwer Academic
,
New York, Boston, Dordrecht, London, Moscow
,
1998
).
61.
Y.
Kuk
,
P. J.
Silverman
, and
F. M.
Chua
,
J. Microsc.
152
,
449
(
1988
).
62.
E.
Palacios-Lidón
,
C. R.
Henry
, and
C.
Barth
,
ACS Catal.
4
,
1838
(
2014
).
63.
M.
Senoner
,
T.
Wirth
,
W.
Unger
,
W.
Österle
,
I.
Kaiander
,
R. L.
Sellin
, and
D.
Bimberg
,
Surf. Interface Anal.
36
,
1423
(
2004
).
64.
S.
Pouch
,
F.
Triozon
,
N.
Chevalier
,
T.
Melin
,
Y. M.
Niquet
, and
Ł.
Borowik
,
RSC Adv.
6
,
6782
(
2016
).
65.
K. K.
Ng
and
S. M.
Sze
,
Physics of Semiconductor Devices
(
John Wiley & Sons, Inc.
,
New York
,
1981
).
66.
S. R. M.
Levinshtein
and
M.
Shur
,
Handbook Serier on Semiconductor Parameters
(
World Scientific Publishing Co. Pte. Ltd.
,
London
,
1999
).
67.
S.
Bastide
,
R.
Butruille
,
D.
Cahen
,
A.
Dutta
,
J.
Libman
,
A.
Shanzer
,
L.
Sun
, and
A.
Vilan
,
J. Phys. Chem. B
101
,
2678
(
1997
).
68.
M.
Takashi
,
U.
Takao
,
K.
Shigeru
, and
M.
Koichi
,
Jpn. J. Appl. Phys., Part 2
38
,
L1321
(
1999
).
You do not currently have access to this content.