The electrocaloric effect (ECE) in ferroelectric materials is a promising candidate for small, effective, low cost, and environmentally friendly solid state cooling applications. Instead of the commonly used indirect estimates based on Maxwell’s relations, direct measurements of the ECE are required to obtain reliable values. In this work, we report on a custom-made quasi-adiabatic calorimeter for direct ECE measurements. The ECE is measured for two promising lead-free materials: Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 bulk ceramics. Adiabatic temperature changes of ΔTEC = 0.5 K at 355 K and ΔTEC = 0.3 K at 314 K were achieved under the application of an electric field of 2 kV/mm for the Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 samples, respectively. The quasi-adiabatic ECE measurements reliably match other direct EC measurements using a differential scanning calorimeter or an infrared camera. The data are compared to indirect EC estimations based on Maxwell’s relations and show that the indirect measurements typically underestimate the effect to a certain degree.

1.
T.
Correia
and
Q.
Zhang
,
Electrocaloric Materials
(
Springer
,
2014
).
2.
X.
Moya
,
E.
Stern-Taulats
,
S.
Crossley
,
D.
González-Alonso
,
S.
Kar-Narayan
,
A.
Planes
,
L.
Mañosa
, and
N. D.
Mathur
,
Adv. Mater.
25
,
1360
(
2013
).
3.
S.-G.
Lu
and
Q.
Zhang
,
Adv. Mater.
21
,
1983
(
2009
).
4.
5.
A. S.
Mischenko
,
Q.
Zhang
,
J. F.
Scott
,
R. W.
Whatmore
, and
N. D.
Mathur
,
Science
311
,
1270
(
2006
).
6.
Y.
Bai
,
G.-P.
Zheng
,
K.
Ding
,
L.
Qiao
,
S.-Q.
Shi
, and
D.
Guo
,
J. Appl. Phys.
110
,
094103
(
2011
).
7.
X.
Hao
,
Z.
Yue
,
J.
Xu
,
S.
An
, and
C.-W.
Nan
,
J. Appl. Phys.
110
,
064109
(
2011
).
8.
Z.
Feng
,
D.
Shi
, and
S.
Dou
,
Solid State Commun.
151
,
123
(
2011
).
9.
S.-G.
Lu
and
Q.
Zhang
,
J. Adv. Dielectr.
02
,
1230011
(
2012
).
10.
B.
Neese
,
B.
Chu
,
S.-G.
Lu
,
Y.
Wang
,
E.
Furman
, and
Q. M.
Zhang
,
Science
321
,
821
(
2008
).
11.
B.
Li
,
W. J.
Ren
,
X. W.
Wang
,
H.
Meng
,
X. G.
Liu
,
Z. J.
Wang
, and
Z. D.
Zhang
,
Appl. Phys. Lett.
96
,
102903
(
2010
).
12.
G.
Singh
,
I.
Bhaumik
,
S.
Ganesamoorthy
,
R.
Bhatt
,
A. K.
Karnal
,
V. S.
Tiwari
, and
P. K.
Gupta
,
Appl. Phys. Lett.
102
,
082902
(
2013
).
13.
Y.
Bai
,
K.
Ding
,
G.-P.
Zheng
,
S.-Q.
Shi
, and
L.
Qiao
,
Phys. Status Solidi A
209
,
941
(
2012
).
14.
M.
Valant
,
L.
Dunne
,
A.-K.
Axelsson
,
N.
Alford
,
G.
Manos
,
J.
Peräntie
,
J.
Hagberg
,
H.
Jantunen
, and
A.
Dabkowski
,
Phys. Rev. B
81
,
214110
(
2010
).
15.
B.
Asbani
,
J.-L.
Dellis
,
A.
Lahmar
,
M.
Courty
,
M.
Amjoud
,
Y.
Gagou
,
K.
Djellab
,
D.
Mezzane
,
Z.
Kutnjak
, and
M.
El Marssi
,
Appl. Phys. Lett.
106
,
042902
(
2015
).
16.
Y.
Bai
,
X.
Han
, and
L.
Qiao
,
Appl. Phys. Lett.
102
,
252904
(
2013
).
17.
W.
Cao
,
W.
Li
,
D.
Xu
,
Y.
Hou
,
W.
Wang
, and
W.
Fei
,
Ceram. Int.
40
,
9273
(
2014
).
18.
Z.
Luo
,
D.
Zhang
,
Y.
Liu
,
D.
Zhou
,
Y.
Yao
,
C.
Liu
,
B.
Dkhil
,
X.
Ren
, and
X.
Lou
,
Appl. Phys. Lett.
105
,
102904
(
2014
).
19.
S.
Crossley
,
T.
Usui
,
B.
Nair
,
S.
Kar-Narayan
,
X.
Moya
,
S.
Hirose
,
A.
Ando
, and
N. D.
Mathur
,
Appl. Phys. Lett.
108
,
032902
(
2016
).
20.
J. F.
Scott
,
J. Phys.: Condens. Matter
20
,
425222
(
2008
).
21.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
,
Nat. Mater.
13
,
439
(
2014
).
22.
L.
Caron
,
Z. Q.
Ou
,
T. T.
Nguyen
,
D. T.
Cam Thanh
,
O.
Tegus
, and
E.
Brück
,
J. Magn. Magn. Mater.
321
,
3559
(
2009
).
23.
F.
Le Goupil
,
A.
Berenov
,
A.-K.
Axelsson
,
M.
Valant
, and
N. M.
Alford
,
J. Appl. Phys.
111
,
124109
(
2012
).
24.
S. G.
Lu
,
B.
Rožič
,
Q. M.
Zhang
,
Z.
Kutnjak
,
R.
Pirc
,
M.
Lin
,
X.
Li
, and
L.
Gorny
,
Appl. Phys. Lett.
97
,
202901
(
2010
).
25.
S.
Kar-Narayan
and
N. D.
Mathur
,
J. Phys. D: Appl. Phys.
43
,
32002
(
2010
).
26.
Y.
Liu
,
B.
Dkhil
, and
E.
Defay
,
ACS Energy Lett.
1
,
521
(
2016
).
27.
G.
Sebald
,
L.
Seveyrat
,
J.-F.
Capsal
,
P.-J.
Cottinet
, and
D.
Guyomar
,
Appl. Phys. Lett.
101
,
022907
(
2012
).
28.
D. Q.
Xiao
,
Y. C.
Wang
,
R. L.
Zhang
,
S. Q.
Peng
,
J. G.
Zhu
, and
B.
Yang
,
Mater. Chem. Phys.
57
,
182
(
1998
).
29.
B.
Rožič
,
B.
Malič
,
H.
Uršič
,
J.
Holc
,
M.
Kosec
,
B.
Neese
,
Q. M.
Zhang
, and
Z.
Kutnjak
,
Ferroelectrics
405
,
26
(
2010
).
30.
J.
Peräntie
,
J.
Hagberg
,
A.
Uusimäki
, and
H.
Jantunen
,
Phys. Rev. B
82
,
134119
(
2010
).
31.
M.
Sanlialp
,
C.
Molin
,
V. V.
Shvartsman
,
S.
Gebhardt
, and
D. C.
Lupascu
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
63
,
1690
(
2016
).
32.
G.
Sebald
,
L.
Seveyrat
,
D.
Guyomar
,
L.
Lebrun
,
B.
Guiffard
, and
S.
Pruvost
,
J. Appl. Phys.
100
,
124112
(
2006
).
33.
J.
Döntgen
,
J.
Rudolph
,
T.
Gottschall
,
O.
Gutfleisch
,
S.
Salomon
,
A.
Ludwig
, and
D.
Hägele
,
Appl. Phys. Lett.
106
,
032408
(
2015
).
34.
Z.
Kutnjak
,
B.
Rožič
,
R.
Pirc
, and
J. G.
Webster
, “
Electrocaloric effect: Theory, measurements, and applications
,” in
Wiley Encyclopedia of Electrical and Electronics Engineering
(
Wiley
,
2015
).
35.
ASTM E1862-14,
Standard Practice for Measuring and Compensating for Reflected Temperature Using Infrared Imaging Radiometers
, Book of Standards 03-03 (
ASTM
,
West Conshohocken, PA
,
2014
).
36.
M.
Sanlialp
,
V. V.
Shvartsman
,
M.
Acosta
,
B.
Dkhil
, and
D. C.
Lupascu
,
Appl. Phys. Lett.
106
,
062901
(
2015
).
37.
V. V.
Shvartsman
,
J.
Zhai
, and
W.
Kleemann
,
Ferroelectrics
379
,
77
(
2009
).
38.
S.
Zhukov
,
Y. A.
Genenko
,
M.
Acosta
,
H.
Humburg
,
W.
Jo
,
J.
Rödel
, and
H.
von Seggern
,
Appl. Phys. Lett.
103
,
152904
(
2013
).
39.
V. V.
Shvartsman
,
W.
Kleemann
,
J.
Dec
,
Z. K.
Xu
, and
S. G.
Lu
,
J. Appl. Phys.
99
,
124111
(
2006
).
40.
C.
Molin
,
J.
Peräntie
,
F.
Le Goupil
,
F.
Weyland
,
M.
Sanlialp
,
N.
Stingelin
,
N.
Novak
,
D. C.
Lupascu
, and
S.
Gebhardt
,
J. Am. Ceram. Soc.
100
,
2885
2892
(
2017
).
You do not currently have access to this content.