A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

1.
J.
Hoffmann
,
G.
Gramse
,
J.
Niegemann
,
M.
Zeier
, and
F.
Kienberger
, “
Measuring low loss dielectric substrates with scanning probe microscopes
,”
Appl. Phys. Lett.
105
,
013102
(
2014
).
2.
A.
Imtiaz
,
T. M.
Wallis
,
S.-H.
Lim
,
H.
Tanbakuchi
,
H. P.
Huber
,
A.
Hornung
,
P.
Hinterdorfer
,
J.
Smoliner
,
F.
Kienberger
, and
P.
Kabos
, “
Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope
,”
J. Appl. Phys.
111
,
093727
(
2012
).
3.
P. J.
de Visser
,
R.
Chua
,
J. O.
Island
,
M.
Finkel
,
A. J.
Katan
,
H.
Thierschmann
,
H. S.
van der Zant
, and
T. M.
Klapwijk
, “
Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy
,”
2D Mater.
3
,
021002
(
2016
).
4.
E. Y.
Ma
,
B.
Bryant
,
Y.
Tokunaga
,
G.
Aeppli
,
Y.
Tokura
, and
Z. X.
Shen
, “
Charge-order domain walls with enhanced conductivity in a layered manganite
,”
Nat. Commun.
6
,
7595
(
2015
).
5.
M. C.
Biagi
,
R.
Fabregas
,
G.
Gramse
,
M.
Van Der Hofstadt
,
A.
Juárez
,
F.
Kienberger
,
L.
Fumagalli
, and
G.
Gomila
, “
Nanoscale electric permittivity of single bacterial cells at gigahertz frequencies by scanning microwave microscopy
,”
ACS Nano
10
,
280
(
2016
).
6.
A.
Tselev
,
J.
Velmurugan
,
A. V.
Ievlev
,
S. V.
Kalinin
, and
A.
Kolmakov
, “
Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids
,”
ACS Nano
10
,
3562
(
2016
).
7.
T.
Clarysse
,
M.
Caymax
,
P.
De Wolf
,
T.
Trenkler
,
W.
Vandervorst
,
J. S.
McMurray
,
J.
Kim
,
C. C.
Williams
,
J. G.
Clark
, and
G.
Neubauer
, “
Epitaxial staircase structure for the calibration of electrical characterization techniques
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
16
,
394
(
1998
).
8.
C. C.
Williams
,
J.
Slinkman
,
W. P.
Hough
, and
H. K.
Wickramasinghe
, “
Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy
,”
Appl. Phys. Lett.
55
,
1662
(
1998
).
9.
A. K.
Henning
,
T.
Hochwitz
,
J.
Slinkman
,
J.
Never
,
S.
Hoffmann
,
P.
Kaszuba
, and
C.
Daghlian
, “
Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy
,”
J. Appl. Phys.
77
,
1888
(
1995
).
10.
J.
Smoliner
,
H. P.
Huber
,
M.
Hochleitner
,
M.
Moertelmaier
, and
F.
Kienberger
, “
Scanning microwave microscopy/spectroscopy on metal-oxide semiconductor systems
,”
J. Appl. Phys.
108
,
064315
(
2010
).
11.
H. P.
Huber
,
I.
Humer
,
M.
Hochleitner
,
M.
Fenner
,
M.
Moertelmaier
,
C.
Rankl
,
A.
Imtiaz
,
T. M.
Wallis
,
H.
Tanbakuchi
,
P.
Hinterdorfer
,
P.
Kabos
,
J.
Smoliner
,
J. J.
Kopanski
, and
F.
Kienberger
, “
Calibrated nanoscale dopant profiling using a scanning microwave microscope
,”
J. Appl. Phys.
111
,
14301
(
2012
).
12.
P.
De Wolf
,
R.
Stephenson
,
T.
Trenkler
,
T.
Clarysse
,
T.
Hantschel
, and
W.
Vandervorst
, “
Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
18
,
361
(
2000
).
13.
Y.-T.
Cui
,
E. Y.
Ma
, and
Z.-X.
Shen
, “
Quartz tuning fork based microwave impedance microscopy
,”
Rev. Sci. Instrum.
87
,
063711
(
2016
).
14.
J.
Hoffmann
,
M.
Wollensack
,
M.
Zeier
,
J.
Niegemann
,
H.-P.
Huber
, and
F.
Kienberger
, “
A calibration algorithm for nearfield scanning microwave microscopes
,” in
12th IEEE Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2012
).
15.
C.
Gao
and
X.-D.
Xiang
, “
Quantitative microwave near-field microscopy of dielectric properties
,”
Rev. Sci. Instrum.
69
,
3846
(
1998
).
16.
K.
Lai
,
W.
Kundhikanjana
,
M. A.
Kelly
, and
Z. X.
Shen
, “
Calibration of shielded microwave probes using bulk dielectrics
,”
Appl. Phys. Lett.
93
,
123105
(
2008
).
17.
G.
Gramse
,
M.
Kasper
,
L.
Fumagalli
,
G.
Gomila
,
P.
Hinterdorfer
, and
F.
Kienberger
, “
Calibrated complex impedance and permittivity measurements with scanning microwave microscopy
,”
Nanotechnology
25
,
145703
(
2014
).
18.
R. W.
Beatty
, “
2-port λg/4 waveguide standard of voltage standing-wave ratio
,”
Electron. Lett.
9
(
2
),
24
(
1973
).
19.
Applying Error Correction to Network Analyzer Measurements–Application Note, http://literature.cdn.keysight.com/litweb/pdf/5965-7709E.pdf.
20.
A. G.
Baca
and
C. I. H.
Ashby
,
Fabrication of GaAs Devices
(
The Institution of Engineering and Technology
,
2009
).
21.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley & Sons, Inc.
,
Hoboken, New Jersey
,
2007
)
22.
D.
Haneman
, “
Photoelectric emission and work functions of InSb, GaAs, Bi2Te3 and germanium
,”
J. Phys. Chem. Solids
11
,
205
(
1959
).
23.
U.
Celano
,
T.
Hantschel
,
G.
Giammaria
,
R. C.
Chintala
,
T.
Conard
,
H.
Bender
, and
W.
Vandervorst
, “
Evaluation of the electrical contact area in contact-mode scanning probe microscopy
,”
J. Appl. Phys.
117
,
214305
(
2015
).
24.
K.
Koehler
,
P.
Ganser
, and
M.
Maier
, “
Comparison of Si δ-doping with homogeneous doping in GaAs
,”
J. Crystal Growth
127
,
720
723
(
1993
).
You do not currently have access to this content.